1,6-Hexanediol

From Wikipedia, the free encyclopedia
1,6-Hexanediol
1,6-Hexanediol.svg
Names
Preferred IUPAC name
Hexane-1,6-diol
Other names
Hexamethylene glycol; 1,6-Dihydroxyhexane; 1,6-Hexylene glycol; Hexamethylenediol; HDO
Identifiers
  • 629-11-8 checkY
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.010.068 Edit this at Wikidata
EC Number
  • 211-074-0
RTECS number
  • MO2100000
UNII
  • InChI=1S/C6H14O2/c7-5-3-1-2-4-6-8/h7-8H,1-6H2 checkY
    Key: XXMIOPMDWAUFGU-UHFFFAOYSA-N checkY
  • OCCCCCCO
Properties
C6H14O2
Molar mass 118.176 g·mol−1
Density 0.967
Melting point 42 °C (108 °F; 315 K)
Boiling point 250 °C (482 °F; 523 K)
500g/L [1]
Solubility soluble in ethanol and acetone, slightly soluble in diethyl ether, insoluble in benzene.[2]
Hazards
Flash point 102 °C (216 °F; 375 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  (what is checkY☒N ?)
Infobox references

1,6-Hexanediol is an organic compound with the formula (CH2CH2CH2OH)2. It is a colorless water-soluble solid.[3]

Production[]

1,6-Hexanediol is prepared by the hydrogenation of adipic acid or its esters.[3][4] Laboratory preparation could be achieved by reduction of adipates with lithium aluminium hydride, although this method is impractical on a commercial scale.

Properties[]

As 1,6-hexanediol contains the hydroxyl group, it undergoes the typical chemical reactions of alcohols such as dehydration, substitution, esterification.

Dehydration of 1,6-hexanediol gives oxepane, 2-methyltetrahydropyran and 2-ethyltetrahydrofuran. Corresponding thiophene and pyrrolidone can be made by reacting 1,6-hexanediol with hydrogen sulfide and ammonia respectively.[5]

Uses[]

1,6-Hexanediol is widely used for industrial polyester and polyurethane production..[3]

1,6-Hexanediol can improve the hardness and flexibility of polyesters as it contains a fairly long hydrocarbon chain. In polyurethanes, it is used as a chain extender, and the resulting modified polyurethane has high resistance to hydrolysis as well as mechanical strength, but with a low glass transition temperature.

It is also an intermediate to acrylics as a crosslinking agent, e.g. hexanediol diacrylate.[3] Unsaturated polyester resins have also been made from 1,6-hexanediol, along with styrene, maleic anhydride and fumaric acid.[5]

Safety[]

1,6-Hexanediol has low toxicity and low flammability, and is generally considered as safe. It is not irritating to skin, but may irritate the respiratory tract or mucous membranes. Dust or vapor of the compound can irritate or damage the eyes.[1]

References[]

  1. ^ a b Chemicals and reagents 2008-2010, Merck
  2. ^ CRC Handbook of Chemistry and Physics, 87th Edition
  3. ^ a b c d Peter Werle; Marcus Morawietz; Stefan Lundmark; Kent Sörensen; Esko Karvinen; Juha Lehtonen (2008). "Alcohols, Polyhydric". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_305.pub2.
  4. ^ Lazier, W. A.; Hill, J. W.; Amend, W. J. (1939). "Hexamethylene glycol". Org. Synth. 19: 48. doi:10.15227/orgsyn.019.0048.
  5. ^ a b BASF intermediates, BASF
Retrieved from ""