3-j symbol

From Wikipedia, the free encyclopedia

In quantum mechanics, the Wigner 3-j symbols, also called 3-jm symbols, are an alternative to Clebsch–Gordan coefficients for the purpose of adding angular momenta.[1] While the two approaches address exactly the same physical problem, the 3-j symbols do so more symmetrically.

Mathematical relation to Clebsch–Gordan coefficients[]

The 3-j symbols are given in terms of the Clebsch–Gordan coefficients by

The j and m components are angular-momentum quantum numbers, i.e., every j (and every corresponding m) is either a nonnegative integer or half-odd-integer. The exponent of the sign factor is always an integer, so it remains the same when transposed to the left, and the inverse relation follows upon making the substitution m3 → −m3:

Definitional relation to Clebsch–Gordan coefficients[]

The CG coefficients are defined so as to express the addition of two angular momenta in terms of a third:

The 3-j symbols, on the other hand, are the coefficients with which three angular momenta must be added so that the resultant is zero:

Here is the zero-angular-momentum state (). It is apparent that the 3-j symbol treats all three angular momenta involved in the addition problem on an equal footing and is therefore more symmetrical than the CG coefficient.

Since the state is unchanged by rotation, one also says that the contraction of the product of three rotational states with a 3-j symbol is invariant under rotations.

Selection rules[]

The Wigner 3-j symbol is zero unless all these conditions are satisfied:

Symmetry properties[]

A 3-j symbol is invariant under an even permutation of its columns:

An odd permutation of the columns gives a phase factor:

Changing the sign of the quantum numbers (time reversal) also gives a phase:

The 3-j symbols also have so-called Regge symmetries, which are not due to permutations or time reversal.[2] These symmetries are:

With the Regge symmetries, the 3-j symbol has a total of 72 symmetries. These are best displayed by the definition of a Regge symbol, which is a one-to-one correspondence between it and a 3-j symbol and assumes the properties of a semi-magic square:[3]

whereby the 72 symmetries now correspond to 3! row and 3! column interchanges plus a transposition of the matrix. These facts can be used to devise an effective storage scheme.[3]

Orthogonality relations[]

A system of two angular momenta with magnitudes j1 and j2 can be described either in terms of the uncoupled basis states (labeled by the quantum numbers m1 and m2), or the coupled basis states (labeled by j3 and m3). The 3-j symbols constitute a unitary transformation between these two bases, and this unitarity implies the orthogonality relations

The triangular delta {j1 j2 j3} is equal to 1 when the triad (j1, j2, j3) satisfies the triangle conditions, and is zero otherwise. The triangular delta itself is sometimes confusingly called[4] a "3-j symbol" (without the m) in analogy to 6-j and 9-j symbols, all of which are irreducible summations of 3-jm symbols where no m variables remain.

Relation to spherical harmonics[]

The 3-jm symbols give the integral of the products of three spherical harmonics[citation needed]

with , and integers.

Relation to integrals of spin-weighted spherical harmonics[]

Similar relations exist for the spin-weighted spherical harmonics if :

Recursion relations[]

Asymptotic expressions[]

For a non-zero 3-j symbol is

where , and is a Wigner function. Generally a better approximation obeying the Regge symmetry is given by

where .

Metric tensor[]

The following quantity acts as a metric tensor in angular-momentum theory and is also known as a Wigner 1-jm symbol:[1]

It can be used to perform time reversal on angular momenta.

Other properties[]

where P are Legendre polynomials.

Relation to Racah V-coefficients[]

Wigner 3-j symbols are related to Racah V-coefficients[5] by a simple phase:

Relation to group theory[]

This section essentially recasts the definitional relation in the language of group theory.

A group representation of a group is a homomorphism of the group into a group of linear transformations over some vector space. The linear transformations can be given by a group of matrices with respect to some basis of the vector space.

The group of transformations leaving angular momenta invariant is the three dimensional rotation group SO(3). When "spin" angular momenta are included, the group is its double covering group, SU(2).

A reducible representation is one where a change of basis can be applied to bring all the matrices into block diagonal form. A representation is irreducible (irrep) if no such transformation exists.

For each value of j, the 2j+1 kets form a basis for an irreducible representation (irrep) of SO(3)/SU(2) over the complex numbers. Given two irreps, the tensor direct product can be reduced to a sum of irreps, giving rise to the Clebcsh-Gordon coefficients, or by reduction of the triple product of three irreps to the trivial irrep 1 giving rise to the 3j symbols.

3j symbols for other groups[]

The symbol has been most intensely studied in the context of the coupling of angular momentum. For this, it is strongly related to the group representation theory of the groups SU(2) and SO(3) as discussed above. However, many other groups are of importance in physics and chemistry, and there has been much work on the symbol for these other groups. In this section, some of that work is considered.

Simply reducible groups[]

The original paper by Wigner[1] was not restricted to SO(3)/SU(2) but instead focussed on simply reducible (SR) groups. These are groups in which

  • all classes are ambivalent i.e. if is a member of a class then so is
  • the Kronecker product of two irreps is multiplicity free i.e. does not contain any irrep more than once.

For SR groups, every irrep is equivalent to its complex conjugate, and under permutations of the columns the absolute value of the symbol is invariant and the phase of each can be chosen so that they at most change sign under odd permutations and remain unchanged under even permutations.

General compact groups[]

Compact groups form a wide class of groups with topological structure. They include the finite groups with added discrete topology and many of the Lie groups.

General compact groups will neither be ambivalent nor multiplicity free. Derome and Sharp[6] and Derome[7] examined the symbol for the general case using the relation to the Clebsch-Gordon coefficients of

where is the dimension of the representation space of and is the complex conjugate representation to .

By examining permutations of columns of the symbol, they showed three cases:

  • if all of are inequivalent then the symbol may be chosen to be invariant under any permutation of its columns
  • if exactly two are equivalent, then transpositions of its columns may be chosen so that some symbols will be invariant while others will change sign. An approach using a wreath product of the group with [8] showed that these correspond to the representations or of the symmetric group . Cyclic permutations leave the symbol invariant.
  • if all three are equivalent, the behaviour is dependant on the representations of the symmetric group. Wreath group representations corresponding to are invariant under transpositions of the columns, corresponding to change sign under transpositions, while a pair corresponding to the two dimensional representation transform according to that.

Further research into symbols for compact groups has been performed based on these principles. [9]

SU(n)[]

The Special unitary group SU(n) is the Lie group of n × n unitary matrices with determinant 1.

The group SU(3) is important in particle theory. There are many papers dealing with the or equivalent symbol [10] [11] [12] [13] [14] [15] [16] [17]

The symbol for the group SU(4) has been studied [18] [19] while there is also work on the general SU(n) groups [20] [21]

Crystallographic point groups[]

There are many papers dealing with the symbols or Clebsch-Gordon coefficients for the finite crystallographic point groups and the double point groups The book by Butler [22] references these and details the theory along with tables.

Magnetic groups[]

Magnetic groups include antilinear operators as well as linear operators. They need to be dealt with using Wigner's theory of corepresentations of unitary and antiunitary groups. A significant departure from standard representation theory is that the multiplicity of the irreducible corepresentation in the direct product of the irreducible corepresentations is generally smaller than the multiplicity of the trivial corepresentation in the triple product , leading to significant differences between the Clebsch-Gordon coefficients and the symbol.

The symbols have been examined for the grey groups [23] [24] and for the magnetic point groups [25]

See also[]

References[]

  1. ^ Jump up to: a b c Wigner, E. P. (1951). "On the Matrices Which Reduce the Kronecker Products of Representations of S. R. Groups". In Wightman, Arthur S. (ed.). The Collected Works of Eugene Paul Wigner. 3. pp. 608–654. doi:10.1007/978-3-662-02781-3_42. ISBN 978-3-642-08154-5.
  2. ^ Regge, T. (1958). "Symmetry Properties of Clebsch-Gordan Coefficients". Nuovo Cimento. 10 (3): 544. Bibcode:1958NCim...10..544R. doi:10.1007/BF02859841. S2CID 122299161.
  3. ^ Jump up to: a b Rasch, J.; Yu, A. C. H. (2003). "Efficient Storage Scheme for Pre-calculated Wigner 3j, 6j and Gaunt Coefficients". SIAM J. Sci. Comput. 25 (4): 1416–1428. doi:10.1137/s1064827503422932.
  4. ^ P. E. S. Wormer; J. Paldus (2006). "Angular Momentum Diagrams". Advances in Quantum Chemistry. Elsevier. 51: 59–124. Bibcode:2006AdQC...51...59W. doi:10.1016/S0065-3276(06)51002-0. ISBN 9780120348510. ISSN 0065-3276.
  5. ^ Racah, G. (1942). "Theory of Complex Spectra II". Physical Review. 62 (9–10): 438–462. Bibcode:1942PhRv...62..438R. doi:10.1103/PhysRev.62.438.
  6. ^ Derome, J-R; Sharp, W. T. (1965). "Racah Algebra for an Arbitrary Group". J. Math. Phys. 6 (10): 1584–1590. Bibcode:1965JMP.....6.1584D. doi:10.1063/1.1704698.
  7. ^ Derome, J-R (1966). "Symmetry Properties of the 3j Symbols for an Arbitrary Group". J. Math. Phys. 7 (4): 612–615. Bibcode:1966JMP.....7..612D. doi:10.1063/1.1704973.
  8. ^ Newmarch, J. D. (1983). "On the 3j symmetries". J. Math. Phys. 24 (4): 757–764. Bibcode:1983JMP....24..757N. doi:10.1063/1.525771.
  9. ^ Butler, P. H.; Wybourne, B. G. (1976). "Calculation of j and jm Symbols forArbitrary Compact Groups. I. Methodology". Int. J. Quantum Chem. X: 581–598.
  10. ^ Moshinsky, Marcos (1962). "Wigner coefficients for the SU3 group and some applications". Rev. Mod. Phys. 34 (4): 813. Bibcode:1962RvMP...34..813M. doi:10.1103/RevModPhys.34.813.
  11. ^ P. McNamee, S. J.; Chilton, Frank (1964). "Tables of Clebsch-Gordan coefficients of SU3". Rev. Mod. Phys. 36 (4): 1005. Bibcode:1964RvMP...36.1005M. doi:10.1103/RevModPhys.36.1005.
  12. ^ Draayer, J. P.; Akiyama, Yoshimi (1973). "Wigner and Racah coefficients for SU3" (PDF). J. Math. Phys. 14 (12): 1904. Bibcode:1973JMP....14.1904D. doi:10.1063/1.1666267. hdl:2027.42/70151.
  13. ^ Akiyama, Yoshimi; Draayer, J. P. (1973). "A users' guide to fortran programs for Wigner and Racah coefficients of SU3". Comp. Phys. Comm. 5 (6): 405. Bibcode:1973CoPhC...5..405A. doi:10.1016/0010-4655(73)90077-5. hdl:2027.42/24983.
  14. ^ Bickerstaff, R. P.; Butler, P. H.; Butts, M. B.; Haase, R. w.; Reid, M. F. (1982). "3jm and 6j tables for some bases of SU6 and SU3". J. Phys. A. 15 (4): 1087. Bibcode:1982JPhA...15.1087B. doi:10.1088/0305-4470/15/4/014.
  15. ^ Swart de, J. J. (1963). "The octet model and its Glebsch-Gordan coefficients". Rev. Mod. Phys. 35 (4): 916. Bibcode:1963RvMP...35..916D. doi:10.1103/RevModPhys.35.916.
  16. ^ Derome, J-R (1967). "Symmetry Properties of the 3j Symbols for SU(3)". J. Math. Phys. 8 (4): 714–716. Bibcode:1967JMP.....8..714D. doi:10.1063/1.1705269.
  17. ^ Hecht, K. T. (1965). "SU3 recoupling and fractional parentage in the 2s-1d shell". Nucl. Phys. 62 (1): 1. Bibcode:1965NucPh..62....1H. doi:10.1016/0029-5582(65)90068-4. hdl:2027.42/32049.
  18. ^ Hecht, K. T.; Pang, Sing Ching (1969). "On the Wigner Supermultiplet Scheme" (PDF). J. Math. Phys. 10 (9): 1571. Bibcode:1969JMP....10.1571H. doi:10.1063/1.1665007. hdl:2027.42/70485.
  19. ^ Haacke, E. M.; Moffat, J. W.; Savaria, P. (1976). "A calculation of SU(4) Glebsch-Gordan coefficients". J. Math. Phys. 17 (11): 2041. Bibcode:1976JMP....17.2041H. doi:10.1063/1.522843.
  20. ^ Baird, G. E.; Biedenharn, L. C. (1963). "On the representation of the semisimple Lie Groups. II". J. Math. Phys. 4 (12): 1449. Bibcode:1963JMP.....4.1449B. doi:10.1063/1.1703926.
  21. ^ Baird, G. E.; Biedenharn, L. C. (1964). "On the representations of the semisimple Lie Groups. III. The explicit conjugation Operation for SUn". J. Math. Phys. 5 (12): 1723. Bibcode:1964JMP.....5.1723B. doi:10.1063/1.1704095.
  22. ^ Butler, P. H. (1981). Point Group Symmetry Applications: methods and tables. Plenum Press, New York.
  23. ^ Newmarch, J. D. (1981). The Racah Algebra for Groups with Time Reversal Symmetry (Thesis). University of New South Wales.
  24. ^ Newmarch, J. D.; Golding, R. M. (1981). "The Racah Algebra for Groups with Time Reversal Symmetry". J. Math. Phys. 22 (2): 233–244. Bibcode:1981JMP....22..233N. doi:10.1063/1.524894.
  25. ^ Kotsev, J. N.; Aroyo, M. I.; Angelova, M. N. (1984). "Tables of Spectroscopic Coefficients for Magnetic Point Group Symmetry". J. Mol. Structure. 115: 123–128.
  • L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading, 1981.
  • D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition, Clarendon, Oxford, 1993.
  • A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press, Princeton, 1960.
  • Maximon, Leonard C. (2010), "3j,6j,9j Symbols", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  • Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K. (1988). Quantum Theory of Angular Momentum. World Scientific Publishing Co.
  • Regge, T. (1958). "Symmetry Properties of Clebsch-Gordon's Coefficients". Nuovo Cimento. 10 (3): 544–545. Bibcode:1958NCim...10..544R. doi:10.1007/BF02859841. S2CID 122299161.
  • Horie, Hisashi (1964). "Representations of the symmetric group and the fractional parentage coefficients". J. Phys. Soc. Jpn. 19 (10): 1783. Bibcode:1964JPSJ...19.1783H. doi:10.1143/JPSJ.19.1783.
  • Itzykson, C.; Nauenberg, M. (1966). "Unitary groups: representations and decompositions". Rev. Mod. Phys. 38 (1): 95. Bibcode:1966RvMp...38...95I. doi:10.1103/RevModPhys.38.95. OSTI 1444219.
  • Kramer, P. (1967). "Orbital fractional parentage coefficients for the harmonic oscillator shell model". Z. Phys. 205 (2): 181. Bibcode:1967ZPhy..205..181K. doi:10.1007/BF01333370. S2CID 122879812.
  • Kramer, P. (1968). "Recoupling coefficients of the symmetric group for shell and cluster model configurations". Z. Phys. 216 (1): 68. Bibcode:1968ZPhy..216...68K. doi:10.1007/BF01380094. S2CID 121508850.
  • Lezuo, K. J. (1972). "The symmetric group and the Gel'fand basis of U(3). Generalizations of the Dirac identity". J. Math. Phys. 13 (9): 1389. Bibcode:1972JMP....13.1389L. doi:10.1063/1.1666151.
  • Paldus, Josef (1974). "Group theoretical approach to the configuration interaction and perturbation theory calculations for atomic and molecular systems". J. Chem. Phys. 61 (12): 5321. Bibcode:1974JChPh..61.5321P. doi:10.1063/1.1681883.
  • Schulten, Klaus; Gordon, Roy G. (1975). "Exact recursive evaluation of 3j and 6j-coefficients for quantum mechanical coupling of angular momenta". J. Math. Phys. 16 (10): 1961–1970. Bibcode:1975JMP....16.1961S. doi:10.1063/1.522426.
  • Paldus, Josef (1976). "Unitary-group approach to the many-electron correlation problem: Relation of Gelfand and Weyl tableau formulations". Phys. Rev. A. 14 (5): 1620. Bibcode:1976PhRvA..14.1620P. doi:10.1103/PhysRevA.14.1620.
  • Sarma, C. R.; Sahasrabudhe, G. G. (1980). "Permutational symmetry of many particle states". J. Math. Phys. 21 (4): 638. Bibcode:1980JMP....21..638S. doi:10.1063/1.524509.
  • Chen, Jin-Quan; Gao, Mei-Juan (1982). "A new approach to permutation group representation". J. Math. Phys. 23 (6): 928. Bibcode:1982JMP....23..928C. doi:10.1063/1.525460.
  • Sarma, C. R. (1982). "Determination of basis for the irreducible representations of the unitary group for U(p+q)↓U(p)×U(q)". J. Math. Phys. 23 (7): 1235. Bibcode:1982JMP....23.1235S. doi:10.1063/1.525507.
  • Chen, J.-Q.; Chen, X.-G. (1983). "The Gel'fand basis and matrix elements of the graded unitary group U(m/n)". J. Phys. A. 16 (15): 3435. Bibcode:1983JPhA...16.3435C. doi:10.1088/0305-4470/16/15/010.
  • Nikam, R. S.; Dinesha, K. V.; Sarma, C. R. (1983). "Reduction of inner-product representations of unitary groups". J. Math. Phys. 24 (2): 233. Bibcode:1983JMP....24..233N. doi:10.1063/1.525698.
  • Chen, Jin-Quan; Collinson, David F.; Gao, Mei-Juan (1983). "Transformation coefficients of permutation groups". J. Math. Phys. 24 (12): 2695. Bibcode:1983JMP....24.2695C. doi:10.1063/1.525668.
  • Chen, Jin-Quan; Gao, Mei-Juan; Chen, Xuan-Gen (1984). "The Clebsch-Gordan coefficient for SU(m/n) Gel'fand basis". J. Phys. A. 17 (3): 481. Bibcode:1984JPhA...17..727K. doi:10.1088/0305-4470/17/3/011.
  • Srinivasa Rao, K. (1985). "Special topics in the quantum theory of angular momentum". Pramana. 24 (1): 15–26. Bibcode:1985Prama..24...15R. doi:10.1007/BF02894812. S2CID 120663002.
  • Wei, Liqiang (1999). "Unified approach for exact calculation of angular momentum coupling and recoupling coefficients". Comp. Phys. Comm. 120 (2–3): 222–230. Bibcode:1999CoPhC.120..222W. doi:10.1016/S0010-4655(99)00232-5.
  • Rasch, J.; Yu, A. C. H. (2003). "Efficient Storage Scheme for Pre-calculated Wigner 3j, 6j and Gaunt Coefficients". SIAM J. Sci. Comput. 25 (4): 1416–1428. doi:10.1137/s1064827503422932.

External links[]

Retrieved from ""