4-Nitroaniline

From Wikipedia, the free encyclopedia
4-Nitroaniline
Skeletal formula of p-nitroaniline
Ball-and-stick model of the p-nitroaniline molecule
Names
Preferred IUPAC name
4-Nitroaniline
Systematic IUPAC name
4-Nitrobenzenamine
Other names
p-Nitroaniline
1-Amino-4-nitrobenzene
p-Nitrophenylamine
Identifiers
3D model (JSmol)
508690
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.555 Edit this at Wikidata
EC Number
  • 202-810-1
27331
KEGG
RTECS number
  • BY7000000
UNII
UN number 1661
Properties
C6H6N2O2
Molar mass 138.12 g/mol
Appearance yellow or brown powder
Odor faint, ammonia-like
Density 1.437 g/ml, solid
Melting point 146 to 149 °C (295 to 300 °F; 419 to 422 K) (lit.)
Boiling point 332 °C (630 °F; 605 K)
0.8 mg/ml at 18.5 °C (IPCS)
Vapor pressure 0.00002 mmHg (20°C)[1]
-66.43·10−6 cm3/mol
Hazards
Main hazards Toxic
Safety data sheet JT Baker
GHS pictograms GHS06: ToxicGHS08: Health hazard
GHS Signal word Warning
GHS hazard statements
H301, H311, H331, H373, H412
P260, P261, P264, P270, P271, P273, P280, P301+310, P302+352, P304+340, P311, P312, P314, P321, P322, P330, P361, P363, P403+233, P405, P501
NFPA 704 (fire diamond)
2
1
0
Flash point 199 °C (390 °F; 472 K)
Lethal dose or concentration (LD, LC):
LD50 (median dose)
3249 mg/kg (rat, oral)
750 mg/kg (rat, oral)
450 mg/kg (guinea pig, oral)
810 mg/kg (mouse, oral)[2]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 6 mg/m3 (1 ppm) [skin][1]
REL (Recommended)
TWA 3 mg/m3 [skin][1]
IDLH (Immediate danger)
300 mg/m3[1]
Related compounds
Related compounds
2-Nitroaniline, 3-Nitroaniline
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  (what is checkY☒N ?)
Infobox references

4-Nitroaniline, p-nitroaniline or 1-amino-4-nitrobenzene is an organic compound with the formula C6H6N2O2. It is an organic chemical compound, consisting of a benzene ring in which an amino group is para to a nitro group. This chemical is commonly used as an intermediate in the synthesis of dyes, antioxidants, pharmaceuticals, gasoline, gum inhibitors, poultry medicines, and as a corrosion inhibitor.

Synthesis[]

It is produced industrially via the amination of 4-nitrochlorobenzene:[3]

ClC6H4NO2 + 2 NH3 → H2NC6H4NO2 + NH4Cl

Below is a laboratory synthesis of 4-nitroaniline from aniline. The key step in this reaction sequence is an electrophilic aromatic substitution to install the nitro group para to the amino group. The amino group can be easily protonated and become a meta director. Therefore, a protection of the acetyl group is required. After this reaction, a separation must be performed to remove 2-nitroaniline, which is also formed in a small amount during the reaction.[4]
Synthesis of nitroaniline.svg

Applications[]

4-Nitroaniline is mainly consumed industrially as a precursor to p-phenylenediamine, an important dye component. The reduction is effected using iron metal and by catalytic hydrogenation.[3]

It is a starting material for the synthesis of Para Red, the first azo dye:[5]

Synthesis of Para Red

When heated with sulfuric acid, it polymerizes explosively into a rigid foam.[6]

Laboratory use[]

Nitroaniline is a solvatochromic dye used for determining Kamlet-Taft solvent parameters. The position of its UV-visual peak changes with the balance of hydrogen bonding acceptors and donors in the solvent.[citation needed]

Toxicity[]

The compound is toxic by way of inhalation, ingestion, and absorption, and should be handled with care. Its LD50 in rats is 750.0 mg/kg when administered orally. 4-Nitroaniline is particularly harmful to all aquatic organisms, and can cause long-term damage to the environment if released as a pollutant. [7]

See also[]

References[]

  1. ^ Jump up to: a b c d NIOSH Pocket Guide to Chemical Hazards. "#0449". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ "p-Nitroaniline". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. ^ Jump up to: a b Gerald Booth (2007). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_411.
  4. ^ Mohrig, J.R.; Morrill, T.C.; Hammond, C.N.; Neckers, D.C. (1997). "Synthesis 5: Synthesis of the Dye Para Red from Aniline". Experimental Organic Chemistry. New York, NY: Freeman. pp. 456–467.
  5. ^ Williamson, Kenneth L. (2002). Macroscale and Microscale Organic Experiments, Fourth Edition. Houghton-Mifflin. ISBN 0-618-19702-8.
  6. ^ Poshkus, A. C.; Parker, J. A. (1970). "Studies on nitroaniline–sulfuric acid compositions: Aphrogenic pyrostats". Journal of Applied Polymer Science. 14 (8): 2049–2064. doi:10.1002/app.1970.070140813.
  7. ^ 4-Nitroaniline; Sigma-Aldrich: St. Louis, Missouri, United States, December 18 2020 https://www.sigmaaldrich.com/SG/en/sds/aldrich/185310

External links[]

Retrieved from ""