AMPD3

From Wikipedia, the free encyclopedia
AMPD3
Identifiers
AliasesAMPD3, adenosine monophosphate deaminase 3
External IDsOMIM: 102772 MGI: 1096344 HomoloGene: 408 GeneCards: AMPD3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001172431
NM_000480
NM_001025389
NM_001025390
NM_001172430

NM_001276301
NM_009667
NM_001372439
NM_001372441

RefSeq (protein)

NP_000471
NP_001020560
NP_001020561
NP_001165901
NP_001165902

NP_001263230
NP_033797
NP_001359368
NP_001359370

Location (UCSC)Chr 11: 10.31 – 10.51 MbChr 7: 110.77 – 110.81 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

AMP deaminase 3 is an enzyme that in humans is encoded by the AMPD3 gene.[5][6]

This gene encodes a member of the AMP deaminase gene family. The encoded protein is a highly regulated enzyme that catalyzes the hydrolytic deamination of adenosine monophosphate to inosine monophosphate, a branch point in the adenylate catabolic pathway. This gene encodes the erythrocyte (E) isoforms, whereas other family members encode isoforms that predominate in muscle (M) and liver (L) cells. Mutations in this gene lead to the clinically asymptomatic, autosomal recessive condition erythrocyte AMP deaminase deficiency. Alternatively spliced transcript variants encoding different isoforms of this gene have been described.[6]

Model organisms[]

Model organisms have been used in the study of AMPD3 function. A conditional knockout mouse line, called Ampd3tm2a(KOMP)Wtsi[12][13] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[14][15][16]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[10][17] Twenty eight tests were carried out on mutant mice and four significant abnormalities were observed.[10] Mutant animals had increased IgG1 levels, increased trabecular bone thickness, decreased B cell numbers / increased granulocyte number and unusual brain histopathology (the thickness of the was reduced and the dorsal 3rd ventricle area was increased).[10]

A second mouse line, called Ampd3T689A, was generated by ENU mutagenesis.[18] This mouse carries a mutation which increases AMPD3 function. Mutant animals have severely reduced erythrocyte lifespan, cyclic erythropoiesis, splenomegaly, and resistance to infection with Plasmodium chabaudi.[18]

References[]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000133805 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000005686 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Mahnke-Zizelman DK, Sabina RL (October 1992). "Cloning of human AMP deaminase isoform E cDNAs. Evidence for a third AMPD gene exhibiting alternatively spliced 5'-exons". The Journal of Biological Chemistry. 267 (29): 20866–77. doi:10.1016/S0021-9258(19)36768-7. PMID 1400401.
  6. ^ a b "Entrez Gene: AMPD3 adenosine monophosphate deaminase (isoform E)".
  7. ^ "Peripheral blood lymphocytes data for Ampd3". Wellcome Trust Sanger Institute.
  8. ^ "Salmonella infection data for Ampd3". Wellcome Trust Sanger Institute.
  9. ^ "Citrobacter infection data for Ampd3". Wellcome Trust Sanger Institute.
  10. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  11. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  12. ^ "International Knockout Mouse Consortium".
  13. ^ "Mouse Genome Informatics".
  14. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  15. ^ Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. S2CID 39281705.
  16. ^ Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  17. ^ van der Weyden L, White JK, Adams DJ, Logan DW (June 2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.
  18. ^ a b Hortle E, Nijagal B, Bauer DC, Jensen LM, Ahn SB, Cockburn IA, Lampkin S, Tull D, McConville MJ, McMorran BJ, Foote SJ, Burgio G (September 2016). "Adenosine monophosphate deaminase 3 activation shortens erythrocyte half-life and provides malaria resistance in mice". Blood. 128 (9): 1290–301. doi:10.1182/blood-2015-09-666834. PMC 5009516. PMID 27465915.

External links[]

Further reading[]

  • Zydowo MM (1994). "Regulatory effects of the lipid-cytosolic enzyme interaction: AMP deaminase". Acta Biochimica Polonica. 40 (4): 429–32. doi:10.18388/abp.1993_4780. PMID 8140814.
  • Yamada Y, Goto H, Ogasawara N (November 1992). "Cloning and nucleotide sequence of the cDNA encoding human erythrocyte-specific AMP deaminase". Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1171 (1): 125–8. doi:10.1016/0167-4781(92)90153-Q. PMID 1420359.
  • Ogasawara N, Goto H, Yamada Y, Nishigaki I, Itoh T, Hasegawa I, Park KS (January 1987). "Deficiency of AMP deaminase in erythrocytes". Human Genetics. 75 (1): 15–8. doi:10.1007/BF00273831 (inactive 31 October 2021). PMID 3804327.{{cite journal}}: CS1 maint: DOI inactive as of October 2021 (link)
  • Yamada Y, Goto H, Murase T, Ogasawara N (December 1994). "Molecular basis for human erythrocyte AMP deaminase deficiency: screening for the major point mutation and identification of other mutations". Human Molecular Genetics. 3 (12): 2243–5. doi:10.1093/hmg/3.12.2243. PMID 7881427.
  • Yamada Y, Goto H, Ogasawara N (February 1994). "A point mutation responsible for human erythrocyte AMP deaminase deficiency". Human Molecular Genetics. 3 (2): 331–4. doi:10.1093/hmg/3.2.331. PMID 8004104.
  • Mahnke-Zizelman DK, Eddy R, Shows TB, Sabina RL (April 1996). "Characterization of the human AMPD3 gene reveals that 5' exon usage is subject to transcriptional control by three tandem promoters and alternative splicing". Biochimica et Biophysica Acta. 1306 (1): 75–92. doi:10.1016/0167-4781(95)00231-6. PMID 8611627.
  • Fortuin FD, Morisaki T, Holmes EW (July 1996). "Subunit composition of AMPD varies in response to changes in AMPD1 and AMPD3 gene expression in skeletal muscle". Proceedings of the Association of American Physicians. 108 (4): 329–33. PMID 8863347.
  • Mahnke-Zizelman DK, D'cunha J, Wojnar JM, Brogley MA, Sabina RL (September 1997). "Regulation of rat AMP deaminase 3 (isoform C) by development and skeletal muscle fibre type". The Biochemical Journal. 326 ( Pt 2) (2): 521–9. doi:10.1042/bj3260521. PMC 1218700. PMID 9291127.
  • Yamada Y, Goto H, Wakamatsu N, Ogasawara N (2001). "A rare case of complete human erythrocyte AMP deaminase deficiency due to two novel missense mutations in AMPD3". Human Mutation. 17 (1): 78. doi:10.1002/1098-1004(2001)17:1<78::AID-HUMU21>3.0.CO;2-B. PMID 11139257.
  • Mahnke-Zizelman DK, Sabina RL (November 2002). "N-terminal sequence and distal histidine residues are responsible for pH-regulated cytoplasmic membrane binding of human AMP deaminase isoform E". The Journal of Biological Chemistry. 277 (45): 42654–62. doi:10.1074/jbc.M203473200. PMID 12213808. S2CID 25657474.
  • Tomikura Y, Hisatome I, Tsuboi M, Yamawaki M, Shimoyama M, Yamamoto Y, Sasaki N, Ogino K, Igawa O, Shigemasa C, Ishiguro S, Ohgi S, Nanba E, Shiota G, Morisaki H, Morisaki T, Kitakaze M (March 2003). "Coordinate induction of AMP deaminase in human atrium with mitochondrial DNA deletion" (PDF). Biochemical and Biophysical Research Communications. 302 (2): 372–6. doi:10.1016/S0006-291X(03)00160-8. PMID 12604357.
  • Mahnke DK, Sabina RL (April 2005). "Calcium activates erythrocyte AMP deaminase [isoform E (AMPD3)] through a protein-protein interaction between calmodulin and the N-terminal domain of the AMPD3 polypeptide". Biochemistry. 44 (14): 5551–9. doi:10.1021/bi048121p. PMID 15807549.
  • Sabina RL, Waldenström A, Ronquist G (May 2006). "The contribution of Ca+ calmodulin activation of human erythrocyte AMP deaminase (isoform E) to the erythrocyte metabolic dysregulation of familial phosphofructokinase deficiency". Haematologica. 91 (5): 652–5. PMID 16670071.
Retrieved from ""