Arthrospira platensis
Arthrospira platensis | |
---|---|
A single Arthrospira platensis colony | |
Scientific classification | |
Domain: | Bacteria |
Phylum: | Cyanobacteria |
Class: | Cyanophyceae |
Order: | Oscillatoriales |
Family: | Microcoleaceae |
Genus: | Arthrospira |
Species: | A. platensis
|
Binomial name | |
Arthrospira platensis Gomont
|
Arthrospira platensis is a filamentous, gram-negative cyanobacterium. This bacterium is non-nitrogen-fixing photoautotroph.[1] It has been isolated in Chenghai Lake, China, soda lakes of East Africa, and subtropical, alkaline lakes.[2][3][4]
Morphology[]
Arthrospira platensis is filamentous, motile bacterium. Motility has been described as a vigorous gliding without a visible flagella.[1]
Metabolism[]
As a photoautotroph the major carbon source is carbon dioxide and water is a source of electrons to perform CO2 reduction.
Genetics[]
Arthrospira platensis has a single circular chromosome containing 6.8 Mb and 6,631 genes.[1] The G+C content has been determined to be 44.3%.[1]
Growth conditions[]
Arthrospira platensis has been found in environments with high concentrations of carbonate and bicarbonate. It can also be found in high salt concentrations because of its alkali and salt tolerance. The temperature optimum for this organism is around 35 °C.[2] Based on environmental conditions, culture medium often has a pH between 9-10, inorganic salts, and a high bicarbonate concentration.[2]
Uses[]
There are various present and past uses for A. platensis. As a result of useful food properties, It has previously been known as 'Spirulina'. Being a useful food property and containing beta-carotene, it is an important health supplement. After the Chernobyl disaster, A. platensis was used to treat radiation sickness symptoms.[citation needed] Not only are there various health benefits of this bacterium, but it also plays a role in energy production. Since the cells contains hydrogenase, it has become a useful material in clean energy production.[citation needed]
References[]
- ^ Jump up to: a b c d Fujisawa T, Narikawa R, Okamoto S, Ehira S, Yoshimura H, Suzuki I, et al. (April 2010). "Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39". DNA Research. 17 (2): 85–103. doi:10.1093/dnares/dsq004. PMC 2853384. PMID 20203057.
- ^ Jump up to: a b c Masojídek J, Torzillo G (2008). "Mass Cultivation of Freshwater Microalgae". Encyclopedia of Ecology. Elsevier. pp. 2226–2235. doi:10.1016/b978-008045405-4.00830-2. ISBN 9780080454054.
- ^ Xu T, Qin S, Hu Y, Song Z, Ying J, Li P, et al. (August 2016). "Whole genomic DNA sequencing and comparative genomic analysis of Arthrospira platensis: high genome plasticity and genetic diversity". DNA Research. 23 (4): 325–38. doi:10.1093/dnares/dsw023. PMC 4991836. PMID 27330141.
- ^ Kebede E, Ahlgren G (October 1996). "Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia". Hydrobiologia. 332 (2): 99–109. doi:10.1007/bf00016689.
- Oscillatoriales