BD+02 2056

From Wikipedia, the free encyclopedia
BD+02 2056
Observation data
Epoch J2000      Equinox J2000
Constellation Hydra
Right ascension 08h 44m 25.7033s[1]
Declination +01° 51′ 36.1066″[1]
Apparent magnitude (V) 10.83
Characteristics
Evolutionary stage main-sequence star
Spectral type G9V[2]
Astrometry
Radial velocity (Rv)−5.1±0.6[3] km/s
Proper motion (μ) RA: −23.344[3] mas/yr
Dec.: −31.570[3] mas/yr
Parallax (π)9.9636 ± 0.0149[3] mas
Distance327.3 ± 0.5 ly
(100.4 ± 0.2 pc)
Details[4]
Mass0.842+0.037
−0.036
 M
Radius0.748±0.015 R
Surface gravity (log g)4.63±0.06[5] cgs
Temperature5350±31[5] K
Metallicity [Fe/H]0.05±0.02[5] dex
Rotation14.36±0.35 d
Rotational velocity (v sin i)4.10±0.30 km/s
Age8.5+4.1
−5.5
 Gyr
Other designations
Gaia DR2 3078836109158636928, TYC 211-706-1, GSC 00211-00706, 2MASS J08442570+0151361[1]
Database references
SIMBADdata

BD+02 2056, also known as WASP-84 is a G-type main-sequence star. Its surface temperature is 5350±31 K, and is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.05±0.02. It is rich in carbon and depleted of oxygen.[5] BD+02 2056's age is probably older than the Sun at 8.5+4.1
−5.5
billion years.[4] The star appears to have an anomalously small radius, which can be explained by the unusually high helium fraction or by it being very young.[6]

A multiplicity survey did not detect any stellar companions to BD+02 2056 as at 2015.[7]

Planetary system[]

In 2013, one planet, named WASP-84b, was discovered on a tight, circular orbit.[8] The planet cannot have formed in its current location and likely migrated from elsewhere. The planetary orbit is well aligned with the equatorial plane of the star, misalignment being equal to 0.3±1.7°. Planetary equilibrium temperature is 832±13 K.[2]

The WASP-84 planetary system[4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.694+0.049
−0.047
 MJ
0.0771±0.0011 8.5234865±0.000007 <0.077 88.368±0.050° 0.942±0.022 RJ

References[]

  1. ^ a b c "BD+02 2056". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2021-01-25.
  2. ^ a b Anderson, D. R.; Triaud, A. H. M. J.; Turner, O. D.; Brown, D. J. A.; Clark, B. J. M.; Smalley, B.; Cameron, A. Collier; Doyle, A. P.; Gillon, M.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pollacco, D.; Queloz, D.; Smith, A. M. S. (2015), "THE WELL-ALIGNED ORBIT OF WASP-84b: EVIDENCE FOR DISK MIGRATION OF a HOT JUPITER", The Astrophysical Journal, 800 (1): L9, arXiv:1409.6335, Bibcode:2015ApJ...800L...9A, doi:10.1088/2041-8205/800/1/L9, S2CID 13606807
  3. ^ a b c d Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. Gaia EDR3 record for this source at VizieR.
  4. ^ a b c Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; et al. (2017), "The GAPS Programme with HARPS-N@TNG XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets", Astronomy & Astrophysics, A107: 602, arXiv:1704.00373, Bibcode:2017A&A...602A.107B, doi:10.1051/0004-6361/201629882, S2CID 118923163
  5. ^ a b c d Teske, Johanna K.; Thorngren, Daniel; Fortney, Jonathan J.; Hinkel, Natalie; Brewer, John M. (2019), "Do Metal-rich Stars Make Metal-rich Planets? New Insights on Giant Planet Formation from Host Star Abundances", The Astronomical Journal, 158 (6): 239, arXiv:1912.00255, Bibcode:2019AJ....158..239T, doi:10.3847/1538-3881/ab4f79, S2CID 208527082
  6. ^ Maxted, P. F. L.; Serenelli, A. M.; Southworth, J. (2015), "Comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars", Astronomy & Astrophysics, 577: A90, arXiv:1503.09111, Bibcode:2015A&A...577A..90M, doi:10.1051/0004-6361/201525774, S2CID 53324330
  7. ^ Wöllert, Maria; Brandner, Wolfgang (2015), "A Lucky Imaging search for stellar sources near 74 transit hosts", Astronomy & Astrophysics, 579: A129, arXiv:1506.05456, Bibcode:2015A&A...579A.129W, doi:10.1051/0004-6361/201526525, S2CID 118903879
  8. ^ Anderson, D. R.; Collier Cameron, A.; Delrez, L.; Doyle, A. P.; Faedi, F.; Fumel, A.; Gillon, M.; Gómez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Skillen, I.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.; West, R. G. (2014), "Three newly discovered sub-Jupiter-mass planets: WASP-69b and WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary★†", Monthly Notices of the Royal Astronomical Society, 445 (2): 1114–1129, arXiv:1310.5654, doi:10.1093/mnras/stu1737, S2CID 54750890

Coordinates: Sky map 08h 44m 25.7033s, +01° 51′ 36.1066″

Retrieved from ""