Beez's theorem

From Wikipedia, the free encyclopedia

In mathematics, Beez's theorem, introduced by Richard Beez in 1875, implies that if n > 3 then in general an (n – 1)-dimensional hypersurface immersed in Rn cannot be deformed.

References[]

  • Laptev, B. L.; Rozenfeld, Boris A.; Markushevich, A. I. (1996), Mathematics of the 19th century, Birkhäuser Verlag, ISBN 978-3-7643-5048-2, MR 1401111
  • Kobayashi, Shoshichi; Nomizu, Katsumi (1969). Foundations of differential geometry. Vol II. Interscience Tracts in Pure and Applied Mathematics. Vol. 15.2. Reprinted in 1996. New York–London: John Wiley & Sons, Inc. ISBN 0-471-15732-5. MR 0238225.
  • Spivak, Michael (1979). A comprehensive introduction to differential geometry. Vol. V (Second edition of 1975 original ed.). Wilmington, DE: Publish or Perish, Inc. ISBN 0-914098-83-7. MR 0532834.


Retrieved from ""