Bio-inspired photonics

From Wikipedia, the free encyclopedia

Bio-inspired photonics or bio-inspired optical materials is a subcategory of bioinspiration. It includes artificial materials with optical properties springing inspiration from living organisms.[1][2] This differs from biophotonics which is the field of study on the development and application of optical techniques to observe biological systems. In living organisms, colours can originate from pigments and/or unique structural characteristics (structural coloration).[1][2]

Molecular biomimetics[]

Molecular biomimetics involves the design of optical materials based on specific molecules and/or macromolecules to induce coloration.[1] Pigment-inspired materials aiming for specific molecular light absorption have been developed as for example melanin-inspired films prepared by polymerization of melanin precursors such as dopamine and 5,6-dihydroxyindole to provoke color saturation.[3][4][5] Materials based on the multi-layer stacking of guanine molecular crystals found in living organisms (e.g. fish[6] and chameleons[7]) have been proposed as potential reflective coatings and solar reflectors. Protein-based optical materials, for instance self-assembling reflectin proteins found in cephalopods [8][9] and silk,[10] have incited interest in artificial materials for camouflage systems,[11] electronic paper (e-paper)[12] and biomedical applications.[13] Non-protein biological macromolecules such as DNA have also been utilized for bio-inspired optics.[14] The most abundant biopolymer on earth, cellulose, has been also utilized as a principal component for bio-optics.[15][1] Modification of wood or other cellulose sources can mitigate scattering and absorption of light leading to optically interesting materials such as transparent wood and paper.[16][17]

Bioinspired periodic/aperiodic structures[]

Structural color is a type of coloration that arises from the interaction of light with nano-sized structures.[18] This interaction is possible because these photonic structures are of the same size as the wavelength of light. Through a mechanism of constructive and destructive interference, certain colors get amplified, while others diminish.

Photonic structures are abundant in nature, existing in a wide range of organisms. Different organisms use different structures, each with a different morphology designed to obtain the desired effect. Examples of this are the photonic crystal underlying the bright colors in peacock feathers[19] or the tree-like structures responsible for the bright blue in some Morpho butterflies.[20]

An example of bio-inspired photonics using structures is the so-called moth eye. Moths have a structure of ordered cylinders in their eyes that do not produce color, but instead reduce reflectivity.[21] This concept has led to creation of antireflective coatings.[22]

Responsive materials[]

References[]

  1. ^ a b c d Tadepalli, Sirimuvva; Slocik, Joseph M.; Gupta, Maneesh K.; Naik, Rajesh R.; Singamaneni, Srikanth (2017). "Bio-Optics and Bio-Inspired Optical Materials". Chemical Reviews. 117 (20): 12705–12763. doi:10.1021/acs.chemrev.7b00153. ISSN 0009-2665. PMID 28937748.
  2. ^ a b Kolle, Mathias; Lee, Seungwoo (2018). "Progress and Opportunities in Soft Photonics and Biologically Inspired Optics". Advanced Materials. 30 (2): 1702669. doi:10.1002/adma.201702669. ISSN 0935-9648. PMID 29057519.
  3. ^ Xiao, Ming; Li, Yiwen; Allen, Michael C.; Deheyn, Dimitri D.; Yue, Xiujun; Zhao, Jiuzhou; Gianneschi, Nathan C.; Shawkey, Matthew D.; Dhinojwala, Ali (2015). "Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles". ACS Nano. 9 (5): 5454–5460. doi:10.1021/acsnano.5b01298. ISSN 1936-0851. PMID 25938924.
  4. ^ della Vecchia, Nicola Fyodor; Cerruti, Pierfrancesco; Gentile, Gennaro; Errico, Maria Emanuela; Ambrogi, Veronica; D’Errico, Gerardino; Longobardi, Sara; Napolitano, Alessandra; Paduano, Luigi; Carfagna, Cosimo; d’Ischia, Marco (2014). "Artificial Biomelanin: Highly Light-Absorbing Nano-Sized Eumelanin by Biomimetic Synthesis in Chicken Egg White". Biomacromolecules. 15 (10): 3811–3816. doi:10.1021/bm501139h. ISSN 1525-7797. PMID 25224565.
  5. ^ Sileika, Tadas S.; Kim, Hyung-Do; Maniak, Piotr; Messersmith, Phillip B. (2011). "Antibacterial Performance of Polydopamine-Modified Polymer Surfaces Containing Passive and Active Components". ACS Applied Materials & Interfaces. 3 (12): 4602–4610. doi:10.1021/am200978h. ISSN 1944-8244. PMID 22044029.
  6. ^ Levy-Lior, Avital; Pokroy, Boaz; Levavi-Sivan, Berta; Leiserowitz, Leslie; Weiner, Steve; Addadi, Lia (2008). "Biogenic Guanine Crystals from the Skin of Fish May Be Designed to Enhance Light Reflectance". Crystal Growth & Design. 8 (2): 507–511. doi:10.1021/cg0704753. ISSN 1528-7483.
  7. ^ Teyssier, Jérémie; Saenko, Suzanne V.; van der Marel, Dirk; Milinkovitch, Michel C. (2015). "Photonic crystals cause active colour change in chameleons". Nature Communications. 6 (1): 6368. Bibcode:2015NatCo...6.6368T. doi:10.1038/ncomms7368. ISSN 2041-1723. PMC 4366488. PMID 25757068.
  8. ^ Crookes, W. J. (2004). "Reflectins: The Unusual Proteins of Squid Reflective Tissues". Science. 303 (5655): 235–238. Bibcode:2004Sci...303..235C. doi:10.1126/science.1091288. ISSN 0036-8075. PMID 14716016. S2CID 44490101.
  9. ^ Kramer, Ryan M.; Crookes-Goodson, Wendy J.; Naik, Rajesh R. (2007). "The self-organizing properties of squid reflectin protein". Nature Materials. 6 (7): 533–538. Bibcode:2007NatMa...6..533K. doi:10.1038/nmat1930. ISSN 1476-1122. PMID 17546036.
  10. ^ Pal, Ramendra K.; Kurland, Nicholas E.; Wang, Congzhou; Kundu, Subhas C.; Yadavalli, Vamsi K. (2015). "Biopatterning of Silk Proteins for Soft Micro-optics". ACS Applied Materials & Interfaces. 7 (16): 8809–8816. doi:10.1021/acsami.5b01380. ISSN 1944-8244. PMID 25853731.
  11. ^ Phan, Long; Walkup, Ward G.; Ordinario, David D.; Karshalev, Emil; Jocson, Jonah-Micah; Burke, Anthony M.; Gorodetsky, Alon A. (2013). "Reconfigurable Infrared Camouflage Coatings from a Cephalopod Protein" (PDF). Advanced Materials. 25 (39): 5621–5625. doi:10.1002/adma.201301472. ISSN 0935-9648. PMID 23897625.
  12. ^ Kreit, E.; Mathger, L. M.; Hanlon, R. T.; Dennis, P. B.; Naik, R. R.; Forsythe, E.; Heikenfeld, J. (2012). "Biological versus electronic adaptive coloration: how can one inform the other?". Journal of the Royal Society Interface. 10 (78): 20120601. doi:10.1098/rsif.2012.0601. ISSN 1742-5689. PMC 3565787. PMID 23015522.
  13. ^ Parker, Sara T.; Domachuk, Peter; Amsden, Jason; Bressner, Jason; Lewis, Jennifer A.; Kaplan, David L.; Omenetto, Fiorenzo G. (2009). "Biocompatible Silk Printed Optical Waveguides". Advanced Materials. 21 (23): 2411–2415. doi:10.1002/adma.200801580. ISSN 0935-9648.
  14. ^ Steckl, Andrew J. (2007). "DNA – a new material for photonics?". Nature Photonics. 1 (1): 3–5. Bibcode:2007NaPho...1....3S. doi:10.1038/nphoton.2006.56. ISSN 1749-4885. S2CID 18005260.
  15. ^ Klemm, Dieter; Heublein, Brigitte; Fink, Hans-Peter; Bohn, Andreas (2005). "Cellulose: Fascinating Biopolymer and Sustainable Raw Material". Angewandte Chemie International Edition. 44 (22): 3358–3393. doi:10.1002/anie.200460587. ISSN 1433-7851. PMID 15861454.
  16. ^ Li, Yuanyuan; Fu, Qiliang; Yang, Xuan; Berglund, Lars (2017). "Transparent wood for functional and structural applications". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2112): 20170182. doi:10.1098/rsta.2017.0182. ISSN 1364-503X. PMC 5746562. PMID 29277747.
  17. ^ Nogi, Masaya; Iwamoto, Shinichiro; Nakagaito, Antonio Norio; Yano, Hiroyuki (2009). "Optically Transparent Nanofiber Paper". Advanced Materials. 21 (16): 1595–1598. doi:10.1002/adma.200803174. ISSN 0935-9648.
  18. ^ Kinoshita, S; Yoshioka, S; Miyazaki, J (2008). "Physics of structural colors". Reports on Progress in Physics. 71 (7): 076401. Bibcode:2008RPPh...71g6401K. doi:10.1088/0034-4885/71/7/076401. ISSN 0034-4885.
  19. ^ Zi, J.; Yu, X.; Li, Y.; Hu, X.; Xu, C.; Wang, X.; Liu, X.; Fu, R. (2003). "Coloration strategies in peacock feathers". Proceedings of the National Academy of Sciences. 100 (22): 12576–12578. Bibcode:2003PNAS..10012576Z. doi:10.1073/pnas.2133313100. ISSN 0027-8424. PMC 240659. PMID 14557541.
  20. ^ Smith, Glenn S. (2009). "Structural color of Morpho butterflies". American Journal of Physics. 77 (11): 1010–1019. Bibcode:2009AmJPh..77.1010S. doi:10.1119/1.3192768. ISSN 0002-9505.
  21. ^ Clapham, P. B.; Hutley, M. C. (1973). "Reduction of Lens Reflexion by the "Moth Eye" Principle". Nature. 244 (5414): 281–282. Bibcode:1973Natur.244..281C. doi:10.1038/244281a0. ISSN 0028-0836. S2CID 4219431.
  22. ^ Chattopadhyay, S.; Huang, Y.F.; Jen, Y.J.; Ganguly, A.; Chen, K.H.; Chen, L.C. (2010). "Anti-reflecting and photonic nanostructures". Materials Science and Engineering: R: Reports. 69 (1–3): 1–35. doi:10.1016/j.mser.2010.04.001. ISSN 0927-796X.
Retrieved from ""