Carbonyl bromide

From Wikipedia, the free encyclopedia
Carbonyl bromide[1]
Structural formula of carbonyl bromide
Ball-and-stick model of carbonyl bromide
Names
Preferred IUPAC name
Carbonyl dibromide
Other names
Bromophosgene, carbonic dibromide
Identifiers
3D model (JSmol)
ChemSpider
UNII
  • InChI=1S/CBr2O/c2-1(3)4 checkY
    Key: MOIPGXQKZSZOQX-UHFFFAOYSA-N checkY
  • InChI=1/CBr2O/c2-1(3)4
    Key: MOIPGXQKZSZOQX-UHFFFAOYAM
  • BrC(Br)=O
Properties
COBr2
Molar mass 187.818 g/mol
Appearance colorless liquid
Density 2.52 g/ml at 15 °C
Boiling point 64.5 °C (148.1 °F; 337.6 K) decomposes
reacts
Thermochemistry
61.8 J·mol−1·K−1 (gas)
309.1 J·mol−1·K−1 (gas)
Std enthalpy of
formation
fH298)
-127.2 or -145.2 kJ·mol−1 (liquid)
-96.2 or -114 kJ·mol−1 (gas)
Hazards
NFPA 704 (fire diamond)
4
0
1
Related compounds
Related compounds
Carbonyl fluoride
Phosgene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY  (what is checkY☒N ?)
Infobox references

Carbonyl bromide, also known as bromophosgene by analogy to phosgene, is an organic chemical compound. It is a decomposition product of halon compounds used in fire extinguishers.[2]

Reactions[]

Carbonyl bromide is formed when carbon tetrabromide is melted and concentrated sulfuric acid is added.

In contrast to phosgene, carbonyl bromide cannot be produced efficiently from carbon monoxide and bromine. A complete conversion is not possible due to thermodynamic reasons. Additionally, the reaction

CO + Br2 ⇌ COBr2

processes slowly at room temperature. Increasing temperature, in order to increase the reaction rate, results in a further shift of the chemical equilibrium towards the educts (since ΔRH < 0 and ΔRS < 0).[3]

On the other hand, carbonyl bromide slowly decomposes to carbon monoxide and elemental bromine even at low temperatures.[4] It is also sensitive to hydrolysis, breaking down into Hydrogen bromide and Carbon dioxide.

References[]

  1. ^ Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, FL: CRC Press, pp. 3–96, 4–50, 5–26, ISBN 0-8493-0594-2
  2. ^ US Occupational Safety and Health Administration (May 1996). "Common Fire Extinguishing Agents". Archived from the original on 2009-09-12. Retrieved 2009-11-21.
  3. ^ T.A. Ryan; E.A. Seddon; K.R. Seddon; C. Ryan (24 May 1996). Phosgene: And Related Carbonyl Halides. pp. 669–671. ISBN 9780080538808. Retrieved April 11, 2015.
  4. ^ Katrizsky, Alan R.; Meth-Cohn, Otto; Wees, Charles W. (1995), Organic Functional Group Transformations, 6, Elsevier, pp. 417–8, ISBN 978-0-08-042704-1, retrieved 2009-11-23
Retrieved from ""