Cesàro summation
In mathematical analysis, Cesàro summation (also known as the Cesàro mean[1][2]) assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.
This special case of a matrix summability method is named for the Italian analyst Ernesto Cesàro (1859–1906).
The term summation can be misleading, as some statements and proofs regarding Cesàro summation can be said to implicate the Eilenberg–Mazur swindle. For example, it is commonly applied to Grandi's series with the conclusion that the sum of that series is 1/2.
Definition[]
Let be a sequence, and let
be its kth partial sum.
The sequence (an) is called Cesàro summable, with Cesàro sum A ∈ ℝ, if, as n tends to infinity, the arithmetic mean of its first n partial sums s1, s2, ..., sn tends to A:
The value of the resulting limit is called the Cesàro sum of the series If this series is convergent, then it is Cesàro summable and its Cesàro sum is the usual sum.
Examples[]
First example[]
Let an = (−1)n for n ≥ 0. That is, is the sequence
Let G denote the series
The series G is known as Grandi's series.
Let denote the sequence of partial sums of G:
This sequence of partial sums does not converge, so the series G is divergent. However, G is Cesàro summable. Let be the sequence of arithmetic means of the first n partial sums:
Then
and therefore, the Cesàro sum of the series G is 1/2.
Second example[]
As another example, let an = n for n ≥ 1. That is, is the sequence
Let G now denote the series
Then the sequence of partial sums is
Since the sequence of partial sums grows without bound, the series G diverges to infinity. The sequence (tn) of means of partial sums of G is
This sequence diverges to infinity as well, so G is not Cesàro summable. In fact, for any sequence which diverges to (positive or negative) infinity, the Cesàro method also leads to a sequence that diverges likewise, and hence such a series is not Cesàro summable.
(C, α) summation[]
In 1890, Ernesto Cesàro stated a broader family of summation methods which have since been called (C, α) for non-negative integers α. The (C, 0) method is just ordinary summation, and (C, 1) is Cesàro summation as described above.
The higher-order methods can be described as follows: given a series ∑an, define the quantities
(where the upper indices do not denote exponents) and define Eα
n to be Aα
n for the series 1 + 0 + 0 + 0 + …. Then the (C, α) sum of ∑an is denoted by (C, α)-∑an and has the value
if it exists (Shawyer & Watson 1994, pp.16-17). This description represents an α-times iterated application of the initial summation method and can be restated as
Even more generally, for α ∈ ℝ \ ℤ−, let Aα
n be implicitly given by the coefficients of the series
and Eα
n as above. In particular, Eα
n are the binomial coefficients of power −1 − α. Then the (C, α) sum of ∑an is defined as above.
If ∑an has a (C, α) sum, then it also has a (C, β) sum for every β > α, and the sums agree; furthermore we have an = o(nα) if α > −1 (see little-o notation).
Cesàro summability of an integral[]
Let α ≥ 0. The integral is (C, α) summable if
exists and is finite (Titchmarsh 1948, §1.15) . The value of this limit, should it exist, is the (C, α) sum of the integral. Analogously to the case of the sum of a series, if α = 0, the result is convergence of the improper integral. In the case α = 1, (C, 1) convergence is equivalent to the existence of the limit
which is the limit of means of the partial integrals.
As is the case with series, if an integral is (C, α) summable for some value of α ≥ 0, then it is also (C, β) summable for all β > α, and the value of the resulting limit is the same.
See also[]
- Abel summation
- Abel's summation formula
- Abel–Plana formula
- Abelian and tauberian theorems
- Almost convergent sequence
- Borel summation
- Divergent series
- Euler summation
- Euler–Boole summation
- Fejér's theorem
- Hölder summation
- Lambert summation
- Perron's formula
- Ramanujan summation
- Riesz mean
- Silverman–Toeplitz theorem
- Stolz–Cesàro theorem
- Summation by parts
References[]
- Shawyer, Bruce; Watson, Bruce (1994), Borel's Methods of Summability: Theory and Applications, Oxford University Press, ISBN 0-19-853585-6
- Titchmarsh, E. C. (1986) [1948], Introduction to the theory of Fourier integrals (2nd ed.), New York, NY: Chelsea Publishing, ISBN 978-0-8284-0324-5
- Volkov, I. I. (2001) [1994], "Cesàro summation methods", Encyclopedia of Mathematics, EMS Press
- Zygmund, Antoni (1988) [1968], Trigonometric Series (2nd ed.), Cambridge University Press, ISBN 978-0-521-35885-9
- Summability methods
- Means