Chimeric nuclease

From Wikipedia, the free encyclopedia

Chimeric nucleases are an example of engineered proteins which must comprise a DNA-binding domain to give sequence specificity and a nuclease domain for DNA cleavage.

DNA-binding domains[]

DNA-binding domains including the basic helix-loop-helix, zinc finger, helix-turn-helix and leucine zipper motifs have been used in construction of sequence-specific nucleases. Of these, zinc fingers have been suggested the most important due to their modularity, allowing construction of a tailor-made DNA-binding domain.[1]

Nuclease domain[]

The nuclease domain is responsible for physical cleavage of DNA strands and may introduce either single stranded or double-stranded breaks. FokI is an example of a sequence-specific endonuclease whose non-specific nuclease domain introduces double stranded breaks and has been used in a variety of experiments including identification of high- and low-affinity binding sites of transcription factors in vitro, to study recruitment of factors to promoter sites in vivo using assay and to study proteins specific to interaction with DNA in the Z-DNA conformation (Durai et al., 2005 and references therein).

See also[]

References[]

  1. ^ Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005). "Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells". Nucleic Acids Res. 33 (18): 5978–90. doi:10.1093/nar/gki912. PMC 1270952. PMID 16251401.


Retrieved from ""