Covariant classical field theory

From Wikipedia, the free encyclopedia

In mathematical physics, covariant classical field theory represents classical fields by sections of fiber bundles, and their dynamics is phrased in the context of a finite-dimensional space of fields. Nowadays, it is well known that[citation needed] jet bundles and the variational bicomplex are the correct domain for such a description. The Hamiltonian variant of covariant classical field theory is the covariant Hamiltonian field theory where momenta correspond to derivatives of field variables with respect to all world coordinates. Non-autonomous mechanics is formulated as covariant classical field theory on fiber bundles over the time axis ℝ.

See also[]

References[]

  • Saunders, D.J., "The Geometry of Jet Bundles", Cambridge University Press, 1989, ISBN 0-521-36948-7
  • Bocharov, A.V. [et al.] "Symmetries and conservation laws for differential equations of mathematical physics", Amer. Math. Soc., Providence, RI, 1999, ISBN 0-8218-0958-X
  • De Leon, M., Rodrigues, P.R., "Generalized Classical Mechanics and Field Theory", Elsevier Science Publishing, 1985, ISBN 0-444-87753-3
  • Griffiths, P.A., "Exterior Differential Systems and the Calculus of Variations", Boston: Birkhäuser, 1983, ISBN 3-7643-3103-8
  • Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery R., Momentum Maps and Classical Fields Part I: Covariant Field Theory, November 2003 arXiv:physics/9801019
  • Echeverria-Enriquez, A., Munoz-Lecanda, M.C., Roman-Roy,M., Geometry of Lagrangian First-order Classical Field Theories, May 1995 arXiv:dg-ga/9505004
  • Giachetta, G., Mangiarotti, L., Sardanashvily, G., "Advanced Classical Field Theory", World Scientific, 2009, ISBN 978-981-283-895-7 (arXiv:0811.0331)
Retrieved from ""