Cyclopentyl methyl ether

From Wikipedia, the free encyclopedia
Cyclopentyl methyl ether
Chemical structure of cyclopentyl methyl ether
Names
Preferred IUPAC name
Methoxycyclopentane
Other names
CPME
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.104.006 Edit this at Wikidata
EC Number
  • 445-090-6
UNII
  • InChI=1S/C6H12O/c1-7-6-4-2-3-5-6/h6H,2-5H2,1H3
    Key: SKTCDJAMAYNROS-UHFFFAOYSA-N
  • COC1CCCC1
Properties
C6H12O
Molar mass 100.161 g·mol−1
Appearance Colorless clear liquid
Density 0.8630 g/cm3 (20 °C) [1]
Melting point −140 °C (−220 °F; 133 K)
Boiling point 106 °C (223 °F; 379 K) [1]
0.011 g/g
Hazards
Safety data sheet (SDS) MSDS
GHS labelling:
GHS02: FlammableGHS07: Exclamation mark
Signal word
Danger
H225, H302, H312, H315, H319
P210, P233, P240, P241, P242, P243, P264, P270, P280, P301+P312, P302+P352, P303+P361+P353, P305+P351+P338, P312, P321, P322, P330, P332+P313, P337+P313, P362, P363, P370+P378, P403+P235, P501
NFPA 704 (fire diamond)
2
3
0
Flash point −1 °C (30 °F; 272 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY  (what is checkY☒N ?)
Infobox references

Cyclopentyl methyl ether (CPME), also known as methoxycyclopentane, is hydrophobic ether solvent. A high boiling point of 106 °C (223 °F) and preferable characteristics such as low formation of peroxides, relative stability under acidic and basic conditions, formation of azeotropes with water coupled with a narrow explosion range render CPME an alternative to other ethereal solvents such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), dioxane, and 1,2-dimethoxyethane (DME).[2]

Synthesis[]

The synthesis of this compound can be done in two different ways:

(1) by methylation of the cyclopentanol.

Cyclopentyl methyl ether synthesis 1.png

(2) by the addition of methanol to the cyclopentene. This second method is better from the point of view of sustainable chemistry since it does not produce by-products.

Cyclopentyl methyl ether synthesis 2.png

Applications[]

Cyclopentyl methyl ether is used in organic synthesis, mainly as a solvent. However it is also useful in extraction, polymerization, crystallization and .

Some examples of reactions where it acts as a solvent are:

  • Reactions involving alkali agents: nucleophilic substitutions of heteroatoms (alcohols and amines) [3]
  • Lewis acids-mediated reactions: Beckmann Reaction, Friedel-Crafts Reaction etc.[4]
  • Reactions using Organometallic reagents or basic agents: Claisen condensation, formation of enolates or Grignard reaction.[5]
  • Reduction and oxidation.[6]
  • Reactions with transition metal catalysts.[7]
  • Reactions with azeotropical removal of water: acetalization, etc.[8]

References[]

  1. ^ a b Baird, Zachariah Steven; Uusi-Kyyny, Petri; Pokki, Juha-Pekka; Pedegert, Emilie; Alopaeus, Ville (6 Nov 2019). "Vapor Pressures, Densities, and PC-SAFT Parameters for 11 Bio-compounds". International Journal of Thermophysics. 40 (11): 102. Bibcode:2019IJT....40..102B. doi:10.1007/s10765-019-2570-9.
  2. ^ Watanabe, Kiyoshi; Yamagiwa, Noriyuki; Torisawa, Yasuhiro (February 24, 2007). "Cyclopentyl Methyl Ether as a New and Alternative Process Solvent". Org. Process Res. Dev. 11 (2): 251–258. doi:10.1021/op0680136.
  3. ^ Ether compounds and polymerizable compounds and manufacturing methods. By: Kiriki, Satoshi.Aug 3, 2015.JP 2015140302
  4. ^ Torisawa, Yasuhiro (15 January 2007). "Conversion of indanone oximes into isocarbostyrils". Bioorganic & Medicinal Chemistry Letters. 17 (2): 453–455. doi:10.1016/j.bmcl.2006.10.022. PMID 17064893.
  5. ^ Okabayashi, Tomohito; Iida, Akira; Takai, Kenta; Misaki, Tomonori; Tanabe, Yoo (September 18, 2007). "Practical and Robust Method for Regio- and Stereoselective Preparation of (E)-Ketene tert-Butyl TMS Acetals and β-Ketoester-derived tert-Butyl (1Z,3E)-1,3-Bis(TMS)dienol Ethers". The Journal of Organic Chemistry. 72 (21): 8142–8145. doi:10.1021/jo701456t. PMID 17877405.
  6. ^ Shimada, Toyoshi; Suda, Masahiko; Nagano, Toyohiro; Kakiuchi, Kiyomi (October 22, 2005). "Facile Preparation of a New BINAP-Based Building Block, 5,5'-DiiodoBINAP, and Its Synthetic Application". The Journal of Organic Chemistry. 70 (24): 10178–10181. doi:10.1021/jo0517186. PMID 16292868.
  7. ^ Molander, Gary A.; Elia, Maxwell D. (November 3, 2006). "Suzuki−Miyaura Cross-Coupling Reactions of Benzyl Halides with Potassium Aryltrifluoroborates". The Journal of Organic Chemistry. 71 (24): 9198–9202. doi:10.1021/jo061699f. PMC 2515367. PMID 17109547.
  8. ^ Azzena, Ugo; Carraro, Massimo; Mamuye, Ashenafi Damtew; Murgia, Irene; Pisano, Luisa; Zedde, Giuseppe (17 April 2015). "Cyclopentyl methyl ether – NH4X: a novel solvent/ catalyst system for low impact acetalization reactions". Green Chemistry. 17 (6): 3281–3284. doi:10.1039/c5gc00465a.
Retrieved from ""