Dimensionless physical constant

From Wikipedia, the free encyclopedia

In physics, a dimensionless physical constant is a physical constant that is dimensionless, i.e. a pure number having no units attached and having a numerical value that is independent of whatever system of units may be used.[1]: 525  For example, if one considers one particular airfoil, the Reynolds number value of the laminar–turbulent transition is one relevant dimensionless physical constant of the problem. However, it is strictly related to the particular problem: for example, it is related to the airfoil being considered and also to the type of fluid in which it moves.

On the other hand, the term fundamental physical constant is used to refer to some universal dimensionless constants. Perhaps the best-known example is the fine-structure constant, α, which has an approximate value of 1137.036.[2]: 367  The correct use of the term fundamental physical constant should be restricted to the dimensionless universal physical constants that currently cannot be derived from any other source.[3][4][5][6][7] This precise definition is the one that will be followed here.

However, the term fundamental physical constant has been sometimes used to refer to certain universal dimensioned physical constants, such as the speed of light c, vacuum permittivity ε0, Planck constant h, and the gravitational constant G, that appear in the most basic theories of physics.[8][9][10][11] NIST[8] and CODATA[12] sometimes used the term in this way in the past.

Characteristics[]

There is no exhaustive list of such constants but it does make sense to ask about the minimal number of fundamental constants necessary to determine a given physical theory. Thus, the Standard Model requires 25 physical constants, about half of them the masses of fundamental particles (which become "dimensionless" when expressed relative to the Planck mass or, alternatively, as coupling strength with the Higgs field along with the gravitational constant).[13]: 58–61 

Fundamental physical constants cannot be derived and have to be measured. Developments in physics may lead to either a reduction or an extension of their number: discovery of new particles, or new relationships between physical phenomena, would introduce new constants, while the development of a more fundamental theory might allow the derivation of several constants from a more fundamental constant.

A long-sought goal of theoretical physics is to find first principles (theory of everything) from which all of the fundamental dimensionless constants can be calculated and compared to the measured values.

The large number of fundamental constants required in the Standard Model has been regarded as unsatisfactory since the theory's formulation in the 1970s. The desire for a theory that would allow the calculation of particle masses is a core motivation for the search for "Physics beyond the Standard Model".

History[]

In the 1920s and 1930s, Arthur Eddington embarked upon extensive mathematical investigation into the relations between the fundamental quantities in basic physical theories, later used as part of his effort to construct an overarching theory unifying quantum mechanics and cosmological physics. For example, he speculated on the potential consequences of the ratio of the electron radius to its mass. Most notably, in a 1929 paper he set out an argument based on the Pauli exclusion principle and the Dirac equation that fixed the value of the reciprocal of the fine-structure constant as