Electrical energy

From Wikipedia, the free encyclopedia

Electrical energy is energy derived as a result of movement of electrically charged particles. When used loosely, electrical energy refers to energy that has been converted from electric potential energy. This energy is supplied by the combination of electric current and electric potential that is delivered by an electrical circuit (e.g., provided by an electric power utility). At the point that this electric potential energy has been converted to another type of energy, it ceases to be electric potential energy. Thus, all electrical energy is potential energy before it is delivered to the end-use. Once converted from potential energy, electrical energy can always be called another type of energy (heat, light, motion, etc.).

Electrical energy is usually sold by the kilowatt hour (1 kW·h = 3.6 MJ) which is the product of the power in kilowatts multiplied by running time in hours. Electric utilities measure energy using an electricity meter, which keeps a running total of the electric energy delivered to a customer.

Electricity generation[]

Electricity generation is the process of generating electrical energy from other forms of energy.

The fundamental principle of electricity generation was discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today: electric current is generated by the movement of a loop of wire, or disc of copper between the poles of a magnet.[1]

For electrical utilities, it is the first step in the delivery of electricity to consumers. The other processes, electricity transmission, distribution, and electrical energy storage and recovery using pumped-storage methods are normally carried out by the electric power industry.[2]

Electricity is most often generated at a power station by electromechanical generators, primarily driven by heat engines fueled by chemical combustion or nuclear fission but also by other means such as the kinetic energy of flowing water and wind. There are many other technologies that can be and are used to generate electricity such as solar photovoltaics and geothermal power.

References[]

  1. ^ "Michael Faraday House". The Institution of Engineering & Technology. Retrieved 8 November 2015.
  2. ^ "Keep the Power On" (PDF). IEC Electrical Energy. Retrieved 8 November 2015.[permanent dead link]
Retrieved from ""