En (Lie algebra)

From Wikipedia, the free encyclopedia
Dynkin diagrams
Finite
E3=A2A1 Dyn2-node n1.pngDyn2-3.pngDyn2-node n2.pngDyn2-2.pngDyn2-node n3.png
E4=A4 Dyn2-node n1.pngDyn2-3.pngDyn2-node n2.pngDyn2-3.pngDyn2-branch.png
E5=D5 Dyn2-node n1.pngDyn2-3.pngDyn2-node n2.pngDyn2-3.pngDyn2-branch.pngDyn2-3.pngDyn2-node n4.png
E6 Dyn2-node n1.pngDyn2-3.pngDyn2-node n2.pngDyn2-3.pngDyn2-branch.pngDyn2-3.pngDyn2-node n4.pngDyn2-3.pngDyn2-node n5.png
E7 Dyn2-node n1.pngDyn2-3.pngDyn2-node n2.pngDyn2-3.pngDyn2-branch.pngDyn2-3.pngDyn2-node n4.pngDyn2-3.pngDyn2-node n5.pngDyn2-3.pngDyn2-node n6.png
E8 Dyn2-node n1.pngDyn2-3.pngDyn2-node n2.pngDyn2-3.pngDyn2-branch.pngDyn2-3.pngDyn2-node n4.pngDyn2-3.pngDyn2-node n5.pngDyn2-3.pngDyn2-node n6.pngDyn2-3.pngDyn2-node n7.png
Affine (Extended)
E9 or E8(1) or E8+ Dyn2-node n1.pngDyn2-3.pngDyn2-node n2.pngDyn2-3.pngDyn2-branch.pngDyn2-3.pngDyn2-node n4.pngDyn2-3.pngDyn2-node n5.pngDyn2-3.pngDyn2-node n6.pngDyn2-3.pngDyn2-node n7.pngDyn2-3.pngDyn2-nodeg n8.png
Hyperbolic (Over-extended)
E10 or E8(1)^ or E8++ Dyn2-node n1.pngDyn2-3.pngDyn2-node n2.pngDyn2-3.pngDyn2-branch.pngDyn2-3.pngDyn2-node n4.pngDyn2-3.pngDyn2-node n5.pngDyn2-3.pngDyn2-node n6.pngDyn2-3.pngDyn2-node n7.pngDyn2-3.pngDyn2-nodeg n8.pngDyn2-3.pngDyn2-nodeg n9.png
Lorentzian (Very-extended)
E11 or E8+++ Dyn2-node n1.pngDyn2-3.pngDyn2-node n2.pngDyn2-3.pngDyn2-branch.pngDyn2-3.pngDyn2-node n4.pngDyn2-3.pngDyn2-node n5.pngDyn2-3.pngDyn2-node n6.pngDyn2-3.pngDyn2-node n7.pngDyn2-3.pngDyn2-nodeg n8.pngDyn2-3.pngDyn2-nodeg n9.pngDyn2-3.pngDyn2-nodeg n10.png
Kac–Moody
E12 or E8++++ Dyn2-node n1.pngDyn2-3.pngDyn2-node n2.pngDyn2-3.pngDyn2-branch.pngDyn2-3.pngDyn2-node n4.pngDyn2-3.pngDyn2-node n5.pngDyn2-3.pngDyn2-node n6.pngDyn2-3.pngDyn2-node n7.pngDyn2-3.pngDyn2-nodeg n8.pngDyn2-3.pngDyn2-nodeg n9.pngDyn2-3.pngDyn2-nodeg n10.pngDyn2-3.pngDyn2-nodeg n11.png
...

In mathematics, especially in Lie theory, En is the Kac–Moody algebra whose Dynkin diagram is a bifurcating graph with three branches of length 1, 2 and k, with k = n − 4.

In some older books and papers, E2 and E4 are used as names for G2 and F4.

Finite-dimensional Lie algebras[]

The En group is similar to the An group, except the nth node is connected to the 3rd node. So the Cartan matrix appears similar, -1 above and below the diagonal, except for the last row and column, have −1 in the third row and column. The determinant of the Cartan matrix for En is 9 − n.

  • E3 is another name for the Lie algebra A1A2 of dimension 11, with Cartan determinant 6.
  • E4 is another name for the Lie algebra A4 of dimension 24, with Cartan determinant 5.
  • E5 is another name for the Lie algebra D5 of dimension 45, with Cartan determinant 4.
  • E6 is the exceptional Lie algebra of dimension 78, with Cartan determinant 3.
  • E7 is the exceptional Lie algebra of dimension 133, with Cartan determinant 2.
  • E8 is the exceptional Lie algebra of dimension 248, with Cartan determinant 1.

Infinite-dimensional Lie algebras[]

  • E9 is another name for the infinite-dimensional affine Lie algebra (also as E8+ or E8(1) as a (one-node) extended E8) (or E8 lattice) corresponding to the Lie algebra of type E8. E9 has a Cartan matrix with determinant 0.
  • E10 (or E8++ or E8(1)^ as a (two-node) over-extended E8) is an infinite-dimensional Kac–Moody algebra whose root lattice is the even Lorentzian unimodular lattice II9,1 of dimension 10. Some of its root multiplicities have been calculated; for small roots the multiplicities seem to be well behaved, but for larger roots the observed patterns break down. E10 has a Cartan matrix with determinant −1:
  • E11 (or E8+++ as a (three-node) very-extended E8) is a Lorentzian algebra, containing one time-like imaginary dimension, that has been conjectured to generate the symmetry "group" of M-theory.
  • En for n≥12 is an infinite-dimensional Kac–Moody algebra that has not been studied much.

Root lattice[]

The root lattice of En has determinant 9 − n, and can be constructed as the lattice of vectors in the unimodular Lorentzian lattice Zn,1 that are orthogonal to the vector (1,1,1,1,...,1|3) of norm n × 12 − 32 = n − 9.

E7½[]

Landsberg and Manivel extended the definition of En for integer n to include the case n = 7½. They did this in order to fill the "hole" in dimension formulae for representations of the En series which was observed by Cvitanovic, Deligne, Cohen and de Man. E has dimension 190, but is not a simple Lie algebra: it contains a 57 dimensional Heisenberg algebra as its nilradical.

See also[]

  • k21, 2k1, 1k2 polytopes based on En Lie algebras.

References[]

  • Kac, Victor G; Moody, R. V.; Wakimoto, M. (1988). "On E10". Differential geometrical methods in theoretical physics (Como, 1987). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. Vol. 250. Dordrecht: Kluwer Acad. Publ. pp. 109–128. MR 0981374.

Further reading[]

Retrieved from ""