Fluorocarbonate

From Wikipedia, the free encyclopedia
An example of a fluorocarbonate: bastnäsite from , Federally Administered Tribal Areas, Pakistan. Size: 1.5×1.5×0.3 cm.

A carbonate fluoride, fluoride carbonate, fluorocarbonate or fluocarbonate is a double salt containing both carbonate and fluoride. The salts are usually insoluble in water, and can have more than one kind of metal cation to make more complex compounds. Rare-earth fluorocarbonates are particularly important as ore minerals for the light rare-earth elements lanthanum, cerium and neodymium. Bastnäsite is the most important source of these elements. Other artificial compounds are under investigation as non-linear optical materials and for transparency in the ultraviolet, with effects over a dozen times greater than Potassium dideuterium phosphate.[1]

Related to this there are also chlorocarbonates and . Along with these fluorocarbonates form the larger family of halocarbonates. In turn halocarbonates are a part of . Compounds where fluorine connects to carbon making acids are unstable, decomposes to carbon dioxide and hydrogen fluoride, and trifluoromethyl alcohol also breaks up at room temperature. compounds exist but react with water to yield carbonyl fluoride.

Structures[]

MI MII MIII Charge CO3 F
3 3 1 1
1
1 1
1 1 4 1 2
2
2 1 5 2 1
1 1 1 3
1 2
3 1 6 2 2
4 1 7 3 1
2 3
2 1 1 5
1 2 8 3 2
3 1 9 1 7
3 2 12 5 2
2 3 13 5 3

The structure of the carbonate fluorides is mainly determined by the carbonate anion, as it is the biggest component. The overall structure depends on the ratio of carbonate to everything else, i.e. number (metals and fluorides)/number of carbonates. For ratios from 1.2 to 1.5 the carbonates are in a flat dense arrangement. From 1.5 to 2.3 the orientation is edge on. From 2.5 to 3.3 the arrangement is flat open. With a ratio from 4 to 11, the carbonate arrangement is flat-lacunar.[2]

The simplest formula is LnCO3F, where Ln has a 3+ charge.

For monocations there is A3CO3F, where A is a large ion such as K, Rb or Tl.[2]

For M = alkali metal, and Ln = lanthanide: MLnCO3F2 1:1:1:2; M3Ln(CO3)2F2 3:1:2:2; M2Ln(CO3)2F 2:1:2:1; M4Ln(CO3)2F3·H2O 4:1:2:3; M4Ln2(CO3)3F4 2:3:3:4.[2] M2Ln(CO3)F2 2:1:1:3.

For B = alkaline earth and Ln = lanthanide (a triple-charged ion) BLn(CO3)2F 1:1:2:1; BLn2(CO3)3F2 1:2:3:2 B2Ln3(CO3)5F3 2:3:5:3; B2Ln(CO3)2F3 2:1:2:3; B2Ln(CO3)F5 2:1:1:5 B2Ln(CO3)3F 2:1:3:1; B3Ln(CO3)F7 3:1:1:7; B3Ln2(CO3)5F2 3:2:5:2.[2]

For alkali with dication combinations: MB: MBCO3F MB3(CO3)2F3·H2O.[2]

For dications A and B there is ABCO3F2 with a degenerate case of A = B.[2]

KPb2(CO3)2F is layered. Each layer is like a sandwich, with lead and carbonate in the outer sublayers, and potassium and fluoride in the inner layer. K2.70Pb5.15(CO3)5F3 extends this structure with some of the layers also being a double-decker sandwich of carbonate, fluoride, carbonate, fluoride, carbonate.[3]

In the rare-earth fluorocarbonates the environment for the rare-earth atoms is 9-coordinated. Six oxygen atoms from carbonate are at the apices of a trigonal prism, and fluoride ions cap the rectangular faces of the prism.[4]

Formation[]

Carbonate fluoride compounds can be formed by a variety of related methods involving heating the precursor ingredients with or without water. Thallous fluoride carbonate was made simply by evaporating a fluoride thallium solution in ethanol and water in air. It absorbed sufficient carbon dioxide to yield the product. Most other carbonate fluorides are very insoluble and need high-temperature water to crystallise from. Supercritical water heated between 350 and 750 °C under pressures around 200 bars can be used. A sealed platinum tube can withstand the heat and pressure. Crystallisation takes about a day. With subcritical water around 200 °C, crystallisation takes about 2 days. This can happen in a teflon-coated pressure autoclave. The starting ingredients can be rare-earth fluorides and alkali carbonates. The high pressure is needed to keep the water liquid and the carbon dioxide under control, otherwise it would escape. If the fluoride levels are low, hydroxide can substitute for the fluoride. Solid-state reactions require even higher temperatures.[2]

Bastnäsite along with lukechangite (and ) can be precipitated from a mixed solution of CeCl3, NaF, and NaOH with carbon dioxide.[5] Another way to make the simple rare-earth fluorocarbonates is to precipitate a rare-earth carbonate from a nitrate solution with ammonium bicarbonate and then add fluoride ions with hydrofluoric acid (HF).[6]

Pb2(CO3)F2 can be made by boiling a water solution of lead nitrate, sodium fluoride and potassium carbonate in a 2:2:1 molar ratio.[7]

Properties[]

structure carbonate vibration, cm−1
ν1 ν2 ν3 ν4
bastnäsite 1086 868 1443 728
synchysite
parisite 1079 1088 870 1449 734 746
KCdCO3F 853 1432
RbCdCO3F 843 1442

The visible spectrum of fluorocarbonates is determined mainly by the cations contained. Different structures only have slight effect on the absorption spectrum of rare-earth elements.[4] The visible spectrum of the rare-earth fluorocarbonates is almost entirely due to narrow absorption bands from neodymium.[4] In the near infrared around 1000 nm there are some absorption lines due to samarium and around 1547 nm are some absorption features due to praseodymium. Deeper into the infrared, bastnäsite has carbonate absorption lines at 2243, 2312 and 2324 nm. Parisite only has a very weak carbonate absorption at 2324 nm, and synchysite absorbs at 2337 nm.[4]

The infrared spectrum due to vibration of carbon–oxygen bonds in carbonate is affected by how many kinds of position there are for the carbonate ions.[4]

Reactions[]

An important chemical reaction used to prepare rare-earth elements from their ores, is to roast concentrated rare-earth fluorocarbonates with sulfuric acid at about 200 °C. This is then leached with water. This process liberates carbon dioxide and hydrofluoric acid and yields rare-earth sulfates:

2 LnCO3F + 3 H2SO4 → Ln2(SO4)3 + 2 HF + 2 H2O + 2 CO2.

Subsequent processing precipitates a double sulfate with sodium sulfate at about 50 °C. The aim is to separate out the rare-earth elements from calcium, aluminium, iron and thorium.[8]

At high enough temperatures the carbonate fluorides lose carbon dioxide, e.g.

KCu(CO3)F → CuO + KF + CO2

at 340 °C.[2]

The processing of bastnäsite is important, as it is the most commonly mined cerium mineral. When heated in air or oxygen at over 500 °C, bastnäsite oxidises and loses volatiles to form ceria (CeO2). Lukechangite also oxidises to ceria and sodium fluoride (NaF). Ce7O12 results when heated to over 1000 °C.[5]

2 Ce(CO3F) + O2 → 2 CeO2 + 2 CO2 + F2[5]
Na3Ce2(CO3F)4F + 1/2 O2 → 2 CeO2 + 3 CO2 + NaF + Na2CO3[5]

At 1300 °C Na2CO3 loses CO2, and between 1300 and 1600 °C NaF and Na2O boil off.[5]

When other rare-earth carbonate fluorides are heated, they lose carbon dioxide and form an oxyfluoride:

LaCO3F → LaOF + CO2[9]

In some rare-earth extraction processes, the roasted ore is then extracted with hydrochloric acid to dissolve rare earths apart from cerium. Cerium is dissolved if the pH is under 0, and thorium is dissolved if it is under 2.[10]

KCdCO3F when heated yields cadmium oxide (CdO) and potassium fluoride (KF).[11]

When lanthanum fluorocarbonate is heated in a hydrogen sulfide, or carbon disulfide vapour around 500 °C, lanthanum fluorosulfide forms:

LaCO3F + 1/2 CO2 → LaSF + 1.5 CO2[12]

Note that this also works for other lanthanides apart from cerium.

When lanthanum carbonate fluoride is heated at 1000 °C with alumina, lanthanum aluminate is produced:[13]

LaCO3F + 2 Al2O3 → LaAlO3 + CO2 + equiv AlOF

Within the hot part of the Earth's crust, rare-earth fluorocarbonates should react with apatite to form monazite.[14]

Minerals[]

Some rare-earth fluorocarbonate minerals exist. They make up most of the economic ores for light rare-earth elements (LREE). These probably result from hydrothermal liquids from granite that contained fluoride.[15] Rare-earth fluorocarbonate minerals can form in bauxite on carbonate rocks, as rare-earth fluoride complexes react with carbonate.[16] Carbonate fluoride compounds of rare-earth elements also occur in carbonatites.[17]

name formula pattern formula weight crystal system space group unit cell volume density comment references
albrechtschraufite MgCa4(UO2)2(CO3)6F2⋅17–18H2O 0:7:0:14:6:2 triclinic P1 a = 13.569, b = 13.419, c = 11.622 Å, α = 115.82, β = 107.61, γ = 92.84° Z= 1774.6 2.69 [18]
Ba2Ca18(SiO4)6(PO4)3(CO3)F3O trigonal R3m a = 7.1255, c = 66.290 Z=3 2914.8 [19]
NaCe2(CO3)2[(CO3)1–xF2x]F Pm2 a=5.1109 c=8.6713 Z=1 196.16 4.126 dissolves in dilute HCl [20]
Na7AlH2(CO3)4F4 9:0:1:12:4:4 505.95 P1 a=6.472 b=6.735 c=8.806 92.50 β=97.33 119.32
Bastnäsite (Ce, La)CO3F 0:0:1:2:1:1 P62m a=7.094 c=4.859
Bastnäsite-(La) La(CO3)F 0:0:1:2:1:1 217.91 P62c
Bastnäsite-(Nd) Nd(CO3)F 0:0:1:2:1:1 223.25
Ca2(CO3)F2 0:2:0:4:1:1 178.16 orthorhombic Pbcn a=7.650 b=7.550 c=6.548 [2]
Ba3(Nd,Ce)2(CO3)5F2 0:3:2:12:5:2 Monoclinic a=21.42 b=5.087 c=13.30 β=94.8° [2][21]
= Baiyuneboite NaBaCe2(CO3)4F 1:1:2:9:4:1 699.58 P63/mmc a=5.1011 c=23.096 [2]
CaY(CO3)2F 0:1:1:5:2:1 268.00 [22]
Francolite
(horváthite) NaY(CO3)F2 1:0:1:4:1:2 209.90 Pmcn a=6.959 b=9.170 c=6.301
[23]
BaCe(CO3)2F 0:1:1:5:2:1 416.46 Trigonal R3m a=5.072 c=38.46 [21][2]
CaBi(CO3)OF
kukharenkoite-(Ce) Ba2Ce(CO3)3F 0:2:1:7:3:1 613.80 P21/m a=13.365 b=5.097 c=6.638 β=106.45 [2]
Na3Ce2(CO3)4F 3:0:2:9:4:1 608.24 P63/mmc a=5.0612 c=22.820
Y4Al(CO3)2(OH,F)11.6H2O 0:0:5:15:2:11 Orthorhombic Pmna a=7.8412 b=11.0313 c=11.3870 Z=2 984.96
Na25BaY2(CO3)11(HCO3)4(SO4)2F2Cl 2059.62 [24]
Sr4Al8(CO3)3(OH,F)26.10-11H2O [25]
Parisite [LaF]2Ca(CO3)3 0:1:2:8:3:2 535.91 Rhombohedral R3 a=7.124 c=84.1
Parisite-(Ce) [CeF]2Ca(CO3)3 0:1:2:8:3:2 538.33 monoclinic Cc a = 12.305 Å, b = 7.1056 Å, c = 28.2478 Å; β = 98.246°; Z = 12
BaCa2(CO3)2F2 0:3:0:6:2:2 375.50 Orthorhombic Cmcm a = 12.511 b=5.857 c=9.446 Z=4 692.2 3.614 named after Aleksandr Semenovich Podlesnyi 1948 [26]
BaCe(CO3)2F 0:1:1:5:2:1 416.46 [2]
Ca2Ce3(CO3)5F3 0:2:3:13:5:3 857.54 R3 a=7.131 c=69.40 [2]
Na3Ca2(CO3)3F 3:2:0:7:3:1 348.15 Cc a=8.012 b=15.79 c=7.019 β =100.78 [2]
Schröckingerite NaCa3(UO2)(CO3)3F(SO4)·10H2O 1:6:13:3:1+ 888.49 also with sulfate
Sheldrickite NaCa3(CO3)2F3·(H2O) 1:3:0:7:2:3 338.25 Trigonal a = 6.726 Å; c = 15.05 Å Z = 3 2.86 [27]
Sr2Al(CO3)F5 0:2:1:7:1:5 357.22 P21/n a=5.450 b=8.704 c=13.150 β=98.72 [2]
Synchysite Ca(Ce,La)(CO3)2F 0:1:1:5:2:1 C2/c a=12.329 b=7.110 c=18.741 β=102.68 [2]
CaTh(CO3)2F2.3H2O P2c a = 6.99, c = 9.71 z=3 410.87 brown [28]
Ba2Ce(CO3)3F 0:2:1:7:3:1 613.80 Monoclinic [29]

Artificial[]

These are non-linear optical crystals in the AMCO3F family KSrCO3F KCaCO3F RbSrCO3F KCdCO3F CsPbCO3F RbPbCO3F RbMgCO3F KMgCO3F RbCdCO3F CsSrCO3F RbCaCO3F KZnCO3F CsCaCO3F RbZnCO3F[30]

formula name weight crystal space group unit cell volume density UV thermal stability properties reference
g/mol Å Å3 nm °C
KPb2(CO3)2F 592.5 Hexagonal P63/mmc a=5.3000 c=13.9302 z=2 338.88 5.807 250 colourless [3]
K2.70Pb5.15(CO3)5F3 1529.65 Hexagonal P-6m2 a= 5.3123 c=18.620 z=1 455.07 5.582 250 colourless non-linear peizoelectric [3]
K2Pb3(CO3)3F2 917.8 Hexagonal P63/mmc a=5.2989 c=23.2326 z=2 564.94 5.395 287 colourless [31]
NaPb2(CO3)2F0.9(OH)0.1 Hexagonal P63/mmm a=5.275 c=13.479 Z=2 325 5.893 <269 260 band gap 4.28 eV; high birefringence [32]
KMgCO3F 142.42 Hexagonal P62m a=8.8437 c=3.9254 z=3 265.88 2.668 200 [33]
RbMgCO3F 188.79 Hexagonal P62m a=9.0160 c=3.9403 z=3 277.39 3.39 colourless
RbPbCO3F 371.67 Hexagonal Pm2 a=5.3488 c=4.8269 Z=1 119.59 5.161 colourless mon-linear [34]
CsPbCO3F 419.11 Hexagonal Pm2 a=5.393 c=5.116 z=1 128.8 5.401 colourless non-linear [34]
CsSrCO3F 230.51 Hexagonal Pm2 a=9.6286 c=4.7482 Z=3 381.2 <200 590 [35]
Cs9Mg6(CO3)8F5 1917.13 Orthorhombic Pmn21 a=13.289 b=6.8258 c=18.824 z=2 1707.4 3.729 208 [33]
Na2Eu(CO3)F3 314.94 Orthorhombic Pbca a=6.596 b=10.774 c=14.09 Z=8 1001.3 4.178 [36]
Na2Gd(CO3)F3 320.24 orthorhombic a=14.125 b=10.771 c=6.576 Z=8 1000.5 4.252 <200 250 colourless [37]
KCaCO3F 158.18 Hexagonal P6m2 a=5.10098 c=4.45608 Z=1 100.413 2.616 ≤320 °C [38]
KCaCO3F 158.18 Hexagonal P62m a=9.1477 c=4.4169 Z=3 320.09 2.462 ≥320 °C [38]
KMnCO3F 173.04 Hexagonal P6c2 a=5.11895 c=8.42020 Z=2 191.080 3.008 [38]
KCdCO3F 230.51 Hexagonal Pm2 a=5.1324 c=4.4324 z=1 101.11 3.786 227 320 colourless [31]
RbCdCO3F 276.88 hexagonal Pm2 1=5.2101 c=4.5293 z=1 106.48 350 colourless [11]
NaZnCO3F 167.37 hexagonal P62c a=8.4461 c=15.550 Z=12 960.7 3.472 [39]
KZnCO3F 183.48 hexagonal P62c a=5.0182 c=8.355 Z=2 182.21 3.344 colourless [40]
RbZnCO3F 229.85 hexagonal P62c a=5.1035 c=8.619 Z=2 194.4 3.926 white [40]
RbCaCO3F 204.56 hexagonal P62m a=9.1979 c=4.4463 Z=3 325.77 3.128 [41]
CsCaCO3F 252.00 hexagonal P62m a=9.92999 c=4.5400 Z=3 340.05 3.692 [41]
KSrCO3F 205.73 hexagonal P62m a=5.2598 c=4.696 Z=1
112.50 3.037 [41]
RbSrCO3F 252.10 hexagonal P62m a=5.3000 c=4.7900 Z=6 116.53 3.137 [41]
Ba3Sc(CO3)F7 649.93 Orthorhombic Cmcm a=11.519 b=13.456 c=5.9740 Z=4 926.0 4.662 [42]
KCuCO3F 181.65 [43]
BaCuCO3F2 298.88 Cmcm a=4.889 b=8.539 c=9.588 [44]
BaMnCO3F2 290.27 Hexagonal P63/m a=4.9120, c=9.919 Z=2 [44][45]
BaCoCO3F2 294.27 [46]
BaNiCO3F2 294.03 [46]
BaZnCO3F2 300.72 Hexagonal P63/m a=4.8523, c=9.854 [45]
Ba2Co(CO3)2F2 491.60 Orthorhombic Pbca a=6.6226, b=11.494, c=9.021 and Z=4 686.7 [47]
BaPb2(CO3)2F2 709.74 R3m a=5.1865 c=23.4881 [2]
KGd(CO3)F2 294.35 Orthorhombic Fddd a=7.006, b=11.181 and c=21.865 [48]
Na3La2(CO3)4F Lukechangite-(La) 605.81 Hexagonal P63/mmc a=5.083, c=23.034, Z=2 [49]
Ba3Sc(CO3)F7 649.91 Orthorhombic Cmcm a=11.519 b=13.456 c=5.974 Z=4 926.0 4.662 colourless [42]
Pb2(CO3)F2 lead carbonate fluoride 512.41 Orthorhombic Pbcn a=8.0836 b=8.309 c=6.841 Z=4 444.6 7.41 [2][7]
KRb2(CO3)F 289.04 R3c a=7.6462 c=17.1364 [2]
K2Rb(CO3)F 242.67 R3c a=7.5225 c=16.7690 [2]
K3(CO3)F 196.30 R3c a=7.4181 c=16.3918 [2]
Rb3(CO3)F 335.41 R3c a=7.761 c=17.412 [2]
Tl3(CO3)F thallous fluoride carbonate 692.16 Monoclinic P21/m a=7.510 b=7.407 c=6.069 γ=120° Z=2 hexagonal prisms [50]
NaYb(CO3)F2 294.04 a=6.897, b=9.118, c=6.219 Horvathite structure [51]
Na2Yb(CO3)2F 358.04 monoclinic C2/c a=17.440, b=6.100, c=11.237, β=95.64° Z=8 1189.7 [51]
Na3Yb(CO3)2F2 400.02 monoclinic Cc a=7.127, b=29.916, c=6.928, β=112.56°; Z=8 1359 [51]
Na5Yb(CO3)4·2H2O 564.05 [51]
Yb(CO3)(OH,F)·xH2O [51]
K4Gd2(CO3)3F4 726.91 R32 a=9.0268 c=13.684 [2]
BaSm(CO3)2F 426.70 R3m a=5.016 c=37.944 [2]
Ba2Y(CO3)2F3 540.57 Pbcn a=9.458 b=6.966 c=11.787 [2]
Na4Yb(CO3)3F 464.03 monoclinic Cc a=8.018 b=15.929 c=13.950 β=101.425 Z=8 1746.4 3.53 263 300 nonlinear deff=1.28pm/V [52]
Li2RbCd(CO3)2F hexagonal P63/m a=4.915 c=15.45 Z=2, 323.3 colourless [53]
KBa2(CO3)2F 452.8 trigonal R3 a=10.119 c=18.60 Z=9 1648 4.106 colourless [54]
RbBa2(CO3)2F 499.19 trigonal R3 a=10.2410 c=18.8277 Z=9 1710.1 4.362 colourless [54]
Na8Lu2(CO3)6F2 899.92 monoclinic Cc a=8.007 b=15.910 c=13.916 β=101.318 Z=4 1738 3.439 250 [55]
Na3Lu(CO3)2F2 401.96 monoclinic Cc a=7.073 b=29.77 c=6.909 β=111.92 Z=8 1349 3.957 220 [55]
Na2Lu(CO3)2F 359.97 monoclinic C2/m a=17.534 b=6.1084 c=11.284 β=111.924 Z=8 1203.2 3.974 [55]
Na3Ca2(CO3)3F rouvilleite 348.16 monoclinic Cm a=8.0892 b=15.900 c=3.5273 β=101.66 Z=2 444.32 2.602 190 white [56]
Na3Zn2(CO3)3F 398.74 monoclinic C2/c a=14.609 b=8.5274 c=20.1877 β=102.426 Z=12 2456.0 3.235 213 200 [57]
Cs3Ba4(CO3)3F5 1223.12 hexagonal P63mc a=11.516 c=7.613 Z=2 874.4 4.646 [41]
K2(HCO3)F·H2O Dipotassium hydrogencarbonate fluoride monohydrate 176.24 monoclinic P 21/m a=5.4228 b=7.1572 c=7.4539 β=105.12 Z=2 279.28 2.096 [58]

References[]

  1. ^ Rao, E. Narsimha; Vaitheeswaran, G.; Reshak, A. H.; Auluck, S. (2016). "Effect of lead and caesium on the mechanical, vibrational and thermodynamic properties of hexagonal fluorocarbonates: a comparative first principles study". RSC Advances. 6 (102): 99885–99897. doi:10.1039/C6RA20408B.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Grice, Joel D.; Maisonneuve, Vincent; Leblanc, Marc (January 2007). "Natural and Synthetic Fluoride Carbonates". Chemical Reviews. 107 (1): 114–132. doi:10.1021/cr050062d. PMID 17212473.
  3. ^ a b c Tran, T. Thao; Halasyamani, P. Shiv (8 February 2013). "New Fluoride Carbonates: Centrosymmetric KPb2(CO3)2F and Noncentrosymmetric K2.70Pb5.15(CO3)5F3". Inorganic Chemistry. 52 (5): 2466–2473. doi:10.1021/ic302357h. PMID 23394454.
  4. ^ a b c d e Turner, D. J.; Rivard, B.; Groat, L. A. (1 July 2014). "Visible and short-wave infrared reflectance spectroscopy of REE fluorocarbonates". American Mineralogist. 99 (7): 1335–1346. Bibcode:2014AmMin..99.1335T. doi:10.2138/am.2014.4674. S2CID 97165560.
  5. ^ a b c d e Corbel, Gwenaël; Courbion, Georges; Le Berre, Françoise; Leblanc, Marc; Le Meins, Jean-Marc; Maisonneuve, Vincent; Mercier, Nicolas (February 2001). "Synthesis from solutions and properties of various metal fluorides and fluoride salts". Journal of Fluorine Chemistry. 107 (2): 193–198. doi:10.1016/S0022-1139(00)00358-4.
  6. ^ Gavrilova, G. V.; Konyukhov, M. Yu.; Logvinenko, V. A.; Sedova, G. N. (April 1994). "Study of the thermal decomposition kinetics of some rare earth carbonates, fluorocarbonates and fluorooxalates". Journal of Thermal Analysis. 41 (4): 889–897. doi:10.1007/BF02547168. S2CID 96635485.
  7. ^ a b Aurivillius, B. (1983). "The crystal structure of lead carbonate fluoride, Pb2F2CO3" (PDF). Acta Chemica Scandinavica. A37: 159. doi:10.3891/acta.chem.scand.37a-0159.
  8. ^ Kul, M.; Topkaya, Y.; Karakaya, İ. (August 2008). "Rare earth double sulfates from pre-concentrated bastnasite". Hydrometallurgy. 93 (3–4): 129–135. doi:10.1016/j.hydromet.2007.11.008.
  9. ^ Janka, Oliver; Schleid, Thomas (January 2009). "Facile Synthesis of Bastnaesite-Type LaF[CO3] and Its Thermal Decomposition to LaOF for Bulk and Eu3+ -Doped Samples". European Journal of Inorganic Chemistry. 2009 (3): 357–362. doi:10.1002/ejic.200800931.
  10. ^ Shuai, Genghong; Zhao, Longsheng; Wang, Liangshi; Long, Zhiqi; Cui, Dali (December 2017). "Aqueous stability of rare earth and thorium elements during hydrochloric acid leaching of roasted bastnaesite". Journal of Rare Earths. 35 (12): 1255–1260. doi:10.1016/j.jre.2017.06.007.
  11. ^ a b Zou, Guohong; Nam, Gnu; Kim, Hyung Gu; Jo, Hongil; You, Tae-Soo; Ok, Kang Min (2015). "ACdCO3F (A = K and Rb): new noncentrosymmetric materials with remarkably strong second-harmonic generation (SHG) responses enhanced via π-interaction". RSC Advances. 5 (103): 84754–84761. doi:10.1039/C5RA17209H. ISSN 2046-2069.
  12. ^ Roesky, Herbert W, ed. (2012). Efficient Preparations of Fluorine Compounds (1 ed.). John Wiley & Sons, Ltd. pp. 419–420. doi:10.1002/9781118409466. ISBN 9781118409466.
  13. ^ Lee, Min-Ho; Jung, Woo-Sik (May 2015). "Facile synthesis of LaAlO3 and Eu(II)-doped LaAlO3 powders by a solid-state reaction". Ceramics International. 41 (4): 5561–5567. doi:10.1016/j.ceramint.2014.12.133.
  14. ^ Shivaramaiah, Radha; Anderko, Andre; Riman, Richard E.; Navrotsky, Alexandra (2 May 2016). "Thermodynamics of bastnaesite: A major rare earth ore mineral". American Mineralogist. 101 (5): 1129–1134. Bibcode:2016AmMin.101.1129S. doi:10.2138/am-2016-5565. S2CID 100884848.
  15. ^ Schmandt, Danielle; Cook, Nigel; Ciobanu, Cristiana; Ehrig, Kathy; Wade, Benjamin; Gilbert, Sarah; Kamenetsky, Vadim (23 October 2017). "Rare Earth Element Fluorocarbonate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia". Minerals. 7 (10): 202. doi:10.3390/min7100202.
  16. ^ Mongelli, Giovanni (June 1997). "Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy)". Chemical Geology. 140 (1–2): 69–79. Bibcode:1997ChGeo.140...69M. doi:10.1016/S0009-2541(97)00042-9.
  17. ^ Holloway, Matthew (4 July 2018), Experimental study of REE carbonate and fluorocarbonate synthesis as a basis for understanding hydrothermal REE mineralisation, hdl:1842/31162
  18. ^ Mereiter, Kurt (28 December 2012). "Description and crystal structure of albrechtschraufite, MgCa4F2[UO2(CO3)3]2⋅17–18H2O". Mineralogy and Petrology. 107 (2): 179–188. doi:10.1007/s00710-012-0261-3. S2CID 95460983.
  19. ^ Krüger, Biljana; Krüger, Hannes; Galuskin, Evgeny V.; Galuskina, Irina O.; Vapnik, Yevgeny; Olieric, Vincent; Pauluhn, Anuschka (2018-12-01). "Aravaite, Ba2Ca18(SiO4)6(PO4)3(CO3)F3O: modular structure and disorder of a new mineral with single and triple antiperovskite layers". Acta Crystallographica Section B. 74 (6): 492–501. doi:10.1107/S2052520618012271. ISSN 2052-5206.
  20. ^ Piilonen, Paula C.; McDonald, Andrew M.; Grice, Joel D.; Rowe, Ralph; Gault, Robert A.; Poirier, Glenn; Cooper, Mark A.; Kolitsch, Uwe; Roberts, Andrew C.; Lechner, William; Palfi, Andreas G. (2010-06-01). "ARISITE-(Ce), A NEW RARE-EARTH FLUORCARBONATE FROM THE ARIS PHONOLITE, NAMIBIA, MONT SAINT-HILAIRE AND THE SAINT-AMABLE SILL, QUEBEC, CANADA". The Canadian Mineralogist. 48 (3): 661–671. doi:10.3749/canmin.48.3.661. ISSN 0008-4476.
  21. ^ a b Mercier, N.; Leblanc, M. (1993). "Crystal growth and structures of rare earth fluorocarbonates: I. Structures of BaSm(CO3)2F and Ba3La2(CO3)5F2: revision of the corresponding huanghoite and cebaite type structures". European Journal of Solid State and Inorganic Chemistry. 30 (1–2): 195–205. ISSN 0992-4361.
  22. ^ Donnay, Joseph Désiré Hubert (1972). Crystal Data: Organic compounds. National Bureau of Standards. p. H-31.
  23. ^ Grice, Joel D.; Chao, George Y. (1 June 1997). "Horvathite-(Y), rare-earth fluorocarbonate, a new mineral species from Mont Saint-Hilaire, Quebec". The Canadian Mineralogist. 35 (3): 743–749. ISSN 0008-4476.
  24. ^ Harlov, Daniel E.; Aranovich, Leonid (2018-01-30). The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Springer. ISBN 978-3-319-61667-4.
  25. ^ Mitchell, R. H. (5 July 2018). "An ephemeral pentasodium phosphate carbonate from natrocarbonatite lapilli, Oldoinyo Lengai, Tanzania". Mineralogical Magazine. 70 (2): 211–218. doi:10.1180/0026461067020326. S2CID 140140550.
  26. ^ Pekov, Igor V.; Zubkova, Natalia V.; Chukanov, Nikita V.; Pushcharovsky, Dmitriy Yu.; Kononkova, Natalia N.; Zadov, Aleksandr E. (2008-03-01). "Podlesnoite BaCa2(CO3)2F2: a new mineral species from the Kirovskii mine Khibiny, Kola Peninsula, Russia". The Mineralogical Record. Retrieved 2019-11-01.
  27. ^ "Sheldrickite Mineral Data". webmineral.com.
  28. ^ "Thorbastnäsite: Mineral information, data and localities". www.mindat.org. Retrieved 2019-11-06.
  29. ^ Mercier, N.; Leblanc, M. (1993). "Crystal growth and structures of rare earth fluorocarbonates: II. Structures of zhonghuacerite Ba2Ce(CO3)3F. Correlations between huanghoite, cebaite and zhonghuacerite type structures". European Journal of Solid State and Inorganic Chemistry. 30 (1–2): 207–216. ISSN 0992-4361.
  30. ^ Buttrey J, Douglas; Thomas, Vogt (2019). Complex Oxides: An Introduction. World Scientific. p. 94. ISBN 9789813278592.
  31. ^ a b Lin, Yuan; Hu, Chun-Li; Mao, Jiang-Gao (2015-11-02). "K 2 Pb 3 (CO 3 ) 3 F 2 and KCdCO 3 F: Novel Fluoride Carbonates with Layered and 3D Framework Structures". Inorganic Chemistry. 54 (21): 10407–10414. doi:10.1021/acs.inorgchem.5b01848. ISSN 0020-1669. PMID 26488674.
  32. ^ Chen, Kaichuang; Peng, Guang; Lin, Chensheng; Luo, Min; Fan, Huixin; Yang, Shunda; Ye, Ning (April 2020). "NaPb2(CO3)2Fx(OH)1-x(0". Journal of Solid State Chemistry: 121407. doi:10.1016/j.jssc.2020.121407.
  33. ^ a b Tran, T. Thao; Young, Joshua; Rondinelli, James M.; Halasyamani, P. Shiv (11 January 2017). "Mixed-Metal Carbonate Fluorides as Deep-Ultraviolet Nonlinear Optical Materials". Journal of the American Chemical Society. 139 (3): 1285–1295. doi:10.1021/jacs.6b11965. PMID 28013546.
  34. ^ a b Tran, T. Thao; Halasyamani, P. Shiv; Rondinelli, James M. (2014-06-16). "Role of Acentric Displacements on the Crystal Structure and Second-Harmonic Generating Properties of RbPbCO 3 F and CsPbCO 3 F". Inorganic Chemistry. 53 (12): 6241–6251. doi:10.1021/ic500778n. ISSN 0020-1669. PMC 4066918. PMID 24867361.
  35. ^ Li, Qingfei; Zou, Guohong; Lin, Chensheng; Ye, Ning (2016). "Synthesis and characterization of CsSrCO3F – a beryllium-free new deep-ultraviolet nonlinear optical material". New Journal of Chemistry. 40 (3): 2243–2248. doi:10.1039/C5NJ03059E.
  36. ^ Mercier, N.; Leblanc, M. (15 December 1994). "A new rare earth fluorocarbonate, Na2Eu(CO3)F3". Acta Crystallographica Section C. 50 (12): 1864–1865. doi:10.1107/S010827019400733X.
  37. ^ Huang, Ling; Wang, Qian; Lin, Chensheng; Zou, Guohong; Gao, Daojiang; Bi, Jian; Ye, Ning (November 2017). "Synthesis and characterization of a new beryllium-free deep-ultraviolet nonlinear optical material: Na2GdCO3F3". Journal of Alloys and Compounds. 724: 1057–1063. doi:10.1016/j.jallcom.2017.07.120.
  38. ^ a b c Rousse, Gwenaelle; Ahouari, Hania; Pomjakushin, Vladimir; Tarascon, Jean-Marie; Recham, Nadir; Abakumov, Artem M. (18 October 2017). "Denticity and Mobility of the Carbonate Groups in AMCO F Fluorocarbonates: A Study on KMnCO F and High Temperature KCaCO F Polymorph". Inorganic Chemistry. 56 (21): 13132–13139. doi:10.1021/acs.inorgchem.7b01926. OSTI 1410124. PMID 29045157.
  39. ^ Peng, Guang; Tang, Yu-Huan; Lin, Chensheng; Zhao, Dan; Luo, Min; Yan, Tao; Chen, Yu; Ye, Ning (2018). "Exploration of new UV nonlinear optical materials in the sodium–zinc fluoride carbonate system with the discovery of a new regulation mechanism for the arrangement of [CO 3 ] 2− groups". Journal of Materials Chemistry C. 6 (24): 6526–6533. doi:10.1039/C8TC01319E. ISSN 2050-7526.
  40. ^ a b Yang, Guangsai; Peng, Guang; Ye, Ning; wang, Jiyang; Luo, Min; Yan, Tao; Zhou, Yuqiao (2015-11-10). "Structural Modulation of Anionic Group Architectures by Cations to Optimize SHG Effects: A Facile Route to New NLO Materials in the ATCO 3 F (A = K, Rb; T = Zn, Cd) Series". Chemistry of Materials. 27 (21): 7520–7530. doi:10.1021/acs.chemmater.5b03890. ISSN 0897-4756.
  41. ^ a b c d e Zou, Guohong; Ye, Ning; Huang, Ling; Lin, Xinsong (2011-12-14). "Alkaline-Alkaline Earth Fluoride Carbonate Crystals ABCO 3 F (A = K, Rb, Cs; B = Ca, Sr, Ba) as Nonlinear Optical Materials". Journal of the American Chemical Society. 133 (49): 20001–20007. doi:10.1021/ja209276a. ISSN 0002-7863. PMID 22035561.
  42. ^ a b Mercier, N.; Leblanc, M. (15 December 1994). "A scandium fluorocarbonate, Ba3Sc(CO3)F7". Acta Crystallographica Section C. 50 (12): 1862–1864. doi:10.1107/S0108270194007328.
  43. ^ Mercier, N., and M. Leblanc. "Synthesis, Characterization and Crystal Structure of a New Copper Fluorocarbonate KCu (CO3) F." ChemInform 25.50 (1994)
  44. ^ a b Mercier, N., and M. Leblanc. "Existence of 3d Transition Metal Fluorocarbonates: Synthesis, Characterization of BaM (CO3) F2 (M: Mn, Cu) and Crystal Structure of BaCu (CO3) F2." ChemInform 24.21 (1993)
  45. ^ a b Ben Ali, A.; Maisonneuve, V.; Smiri, L.S.; Leblanc, M. (June 2002). "Synthesis and crystal structure of BaZn(CO3)F2; revision of the structure of BaMn(CO3)F2". Solid State Sciences. 4 (7): 891–894. Bibcode:2002SSSci...4..891B. doi:10.1016/S1293-2558(02)01339-0.
  46. ^ a b Corbel, Gwenaël; Courbion, Georges; Le Berre, Françoise; Leblanc, Marc; Le Meins, Jean-Marc; Maisonneuve, Vincent; Mercier, Nicolas (February 2001). "Synthesis from solutions and properties of various metal fluorides and fluoride salts". Journal of Fluorine Chemistry. 107 (2): 193–198. doi:10.1016/S0022-1139(00)00358-4.
  47. ^ Ben Ali, A.; Maisonneuve, V.; Kodjikian, S.; Smiri, L.S.; Leblanc, M. (April 2002). "Synthesis, crystal structure and magnetic properties of a new fluoride carbonate Ba2Co(CO3)2F2". Solid State Sciences. 4 (4): 503–506. Bibcode:2002SSSci...4..503B. doi:10.1016/S1293-2558(02)01274-8.
  48. ^ Mercier, N.; Leblanc, M.; Antic-Fidancev, E.; Lemaitre-Blaise, M.; Porcher, P. (July 1995). "Structure and optical properties of KGd(CO3)F2:Eu3+". Journal of Alloys and Compounds. 225 (1–2): 198–202. doi:10.1016/0925-8388(94)07093-8.
  49. ^ Mercier, N.; Taulelle, F.; Leblanc, M. (1993). "Growth, structure, NMR characterization of a new fluorocarbonate Na3La2(CO3)4F". European Journal of Solid State and Inorganic Chemistry. 30 (6): 609–617. ISSN 0992-4361.
  50. ^ Alcock, N. W. (15 March 1973). "The crystal structure of thallous fluoride carbonate". Acta Crystallographica Section B. 29 (3): 498–502. doi:10.1107/S0567740873002815.
  51. ^ a b c d e Ben Ali, Amor; Maisonneuve, Vincent; Leblanc, Marc (November 2002). "Phase stability regions in the Na2CO3–YbF3–H2O system at 190°C. Crystal structures of two new fluoride carbonates, Na2Yb(CO3)2F and Na3Yb(CO3)2F2". Solid State Sciences. 4 (11–12): 1367–1375. Bibcode:2002SSSci...4.1367B. doi:10.1016/S1293-2558(02)00024-9.
  52. ^ Chen, Qiaoling; Luo, Min; Lin, Chensheng (2018-09-30). "Na4Yb(CO3)3F: A New UV Nonlinear Optical Material with a Large Second Harmonic Generation Response". Crystals. 8 (10): 381. doi:10.3390/cryst8100381. ISSN 2073-4352.
  53. ^ Chen, Jie; Luo, Min; Ye, Ning (2015-03-01). "Crystal structure of a new alkaline-cadmium carbonate Li2RbCd(CO3)2F, C2CdFLi2O6Rb". Zeitschrift für Kristallographie - New Crystal Structures. 230 (1): 1–2. doi:10.1515/ncrs-2014-9048. ISSN 2197-4578.
  54. ^ a b Liu, Lili; Yang, Yun; Dong, Xiaoyu; Zhang, Bingbing; Wang, Ying; Yang, Zhihua; Pan, Shilie (2016-02-24). "Design and Syntheses of Three Novel Carbonate Halides: Cs 3 Pb 2 (CO 3 ) 3 I, KBa 2 (CO 3 ) 2 F, and RbBa 2 (CO 3 ) 2 F". Chemistry - A European Journal. 22 (9): 2944–2954. doi:10.1002/chem.201504552. PMID 26822173.
  55. ^ a b c Luo, Min; Ye, Ning; Zou, Guohong; Lin, Chensheng; Cheng, Wendan (2013-08-13). "Na 8 Lu 2 (CO 3 ) 6 F 2 and Na 3 Lu(CO 3 ) 2 F 2 : Rare Earth Fluoride Carbonates as Deep-UV Nonlinear Optical Materials". Chemistry of Materials. 25 (15): 3147–3153. doi:10.1021/cm4023369. ISSN 0897-4756.
  56. ^ Luo, Min; Song, Yunxia; Lin, Chensheng; Ye, Ning; Cheng, Wendan; Long, XiFa (2016-04-12). "Molecular Engineering as an Approach To Design a New Beryllium-Free Fluoride Carbonate as a Deep-Ultraviolet Nonlinear Optical Material". Chemistry of Materials. 28 (7): 2301–2307. doi:10.1021/acs.chemmater.6b00360. ISSN 0897-4756.
  57. ^ Tang, Changcheng; Jiang, Xingxing; Guo, Shu; Xia, Mingjun; Liu, Lijuan; Wang, Xiaoyang; Lin, Zheshuai; Chen, Chuangtian (2018). "Synthesis, crystal structure and optical properties of a new fluorocarbonate with an interesting sandwich-like structure". Dalton Transactions. 47 (18): 6464–6469. doi:10.1039/C8DT00760H. ISSN 1477-9226. PMID 29691535.
  58. ^ Kahlenberg, Volker; Schwaier, Timo (2013-04-15). "Dipotassium hydrogencarbonate fluoride monohydrate". Acta Crystallographica Section E. 69 (4): i20. doi:10.1107/S1600536813006041. ISSN 1600-5368. PMC 3629464. PMID 23633982.
Retrieved from ""