Fontaine–Mazur conjecture

From Wikipedia, the free encyclopedia

In mathematics, the Fontaine–Mazur conjectures are some conjectures introduced by Fontaine and Mazur (1995) about when p-adic representations of Galois groups of number fields can be constructed from representations on étale cohomology groups of a varieties.[1][2] Some cases of this conjecture in dimension 2 were already proved by Dieulefait (2004).

References[]

  1. ^ Koch, Helmut (2013). "Fontaine-Mazur Conjecture". Galois theory of p-extensions. Springer Science & Business Media. p. 180. ISBN 9783662049679.
  2. ^ Calegari, Frank (2011). "Even Galois representations and the Fontaine–Mazur conjecture" (PDF). Inventiones Mathematicae. 185 (1): 1–16. arXiv:1012.4819. Bibcode:2011InMat.185....1C. doi:10.1007/s00222-010-0297-0. S2CID 8937648. arXiv preprint
  • Fontaine, Jean-Marc; Mazur, Barry (1995), "Geometric Galois representations", in Coates, John; Yau., S.-T. (eds.), Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Series in Number Theory, vol. 1, Int. Press, Cambridge, MA, pp. 41–78, ISBN 978-1-57146-026-4, MR 1363495
  • Dieulefait, Luis Victor (2004), "Existence of families of Galois representations and new cases of the Fontaine-Mazur conjecture", J. Reine Angew. Math., 577: 147–151, arXiv:math/0304433v1, Bibcode:2003math......4433D

External links[]

Retrieved from ""