Glossary of genetics

From Wikipedia, the free encyclopedia

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology and evolutionary biology.[1] It is intended as introductory material for novices; for more specific and technical detail, see the article corresponding to each term. For related terms, see Glossary of evolutionary biology.


0–9[]

3'-end

Also rendered as three-prime end.

One of two ends of a single linear strand of DNA or RNA, specifically the end at which the chain of nucleotides terminates at the third carbon atom in the furanose ring of deoxyribose or ribose (i.e. the terminus at which the 3' carbon is not attached to another nucleotide via a phosphodiester bond; in vivo, the 3' carbon is often still bonded to a hydroxyl group). By convention, sequences and structures positioned nearer to the 3'-end relative to others are referred to as downstream. Contrast 5'-end.
A ribose ring with the carbon atoms numbered 1' through 5' according to chemical convention. The 5' carbon is said to be upstream; the 3' carbon is said to be downstream. Bonds to a generic base and a phosphate group are also shown.
5' cap

Also rendered as five-prime cap.

A specially altered nucleotide attached to the 5'-end of some primary RNA transcripts as part of the set of post-transcriptional modifications which convert raw transcripts into mature RNA products. The precise structure of the 5' cap varies widely by organism; in eukaryotes, the most basic cap consists of a methylated guanine nucleoside bonded to the triphosphate group that terminates the 5'-end of an RNA sequence. Among other functions, capping helps to regulate the export of mature RNAs from the nucleus, prevent their degradation by exonucleases, and promote translation in the cytoplasm. Mature mRNAs can also be decapped.
5'-end

Also rendered as five-prime end.

One of two ends of a single linear strand of DNA or RNA, specifically the end at which the chain of nucleotides terminates at the fifth carbon atom in the furanose ring of deoxyribose or ribose (i.e. the terminus at which the 5' carbon is not attached to another nucleotide via a phosphodiester bond; in vivo, the 5' carbon is often still bonded to a phosphate group). By convention, sequences and structures positioned nearer to the 5'-end relative to others are referred to as upstream. Contrast 3'-end.

A[]

A-DNA
acentric
(of a linear chromosome or chromosome fragment) Having no centromere.[2]
acrocentric
(of a linear chromosome or chromosome fragment) Having a centromere positioned very close to one end of the chromosome, as opposed to at the end or in the middle.[2]
activator
A type of transcription factor that increases the transcription of a gene or set of genes. Most activators work by binding to a specific sequence located within or near an enhancer or promoter and facilitating the binding of RNA polymerase and other transcription machinery in the same region. See also coactivator; contrast repressor.
adenine

Abbreviated in shorthand with the letter A.

One of the four main nucleobases present in DNA and RNA. Adenine forms a base pair with thymine in DNA and with uracil in RNA.
affected relative pair
Any pair of organisms which are related genetically and both affected by the same trait. For example, two cousins who both have blue eyes are an affected relative pair since they are both affected by the allele that codes for blue eyes.
allele
One of multiple alternative versions of an individual gene, each of which is a viable DNA sequence occupying a given position, or locus, on a chromosome. For example, in humans, one allele of the eye-color gene produces blue eyes and another allele of the eye-color gene produces brown eyes.
allele frequency
The relative frequency with which a particular allele of a given gene (as opposed to other alleles of the same gene) occurs at a particular locus in the members of a population; more specifically, it is the proportion of all chromosomes within a population that carry a particular allele, expressed as a fraction or percentage. Allele frequency is distinct from genotype frequency, although they are related.
allosome

Also called a sex chromosome, heterochromosome, or idiochromosome.

Any chromosome that differs from an ordinary autosome in size, form, or behavior and which is responsible for determining the sex of an organism. In humans, the X chromosome and the Y chromosome are sex chromosomes.
alternative splicing

Also called differential splicing or simply splicing.

A regulated phenomenon of eukaryotic gene expression in which specific exons or parts of exons from the same primary transcript are variably included within or removed from the final, mature messenger RNA transcript. A class of post-transcriptional modification, alternative splicing allows a single gene to code for multiple protein isoforms and greatly increases the diversity of proteins that can be produced by an individual genome. See also RNA splicing.
amino acid
An organic compound containing amine and carboxyl functional groups, as well as a side chain specific to each individual amino acid. Out of nearly 500 known amino acids, a set of 20 are coded for by the standard genetic code and incorporated in sequence as the building blocks of polypeptides and hence of proteins. The specific sequence of amino acids in the polypeptide chains that form a protein are ultimately responsible for determining the protein's structure and function.
anaphase
The stage of mitosis and meiosis that occurs after metaphase and before telophase, when the replicated chromosomes are segregated and each of the sister chromatids are moved to opposite sides of the cell.
aneuploidy
The condition of a cell or organism having an abnormal number of one or more specific individual chromosomes (but excluding abnormal numbers of complete sets of chromosomes, which instead is known as euploidy).
anticipation
A phenomenon by which the symptoms of a genetic disorder become apparent (and often more severe) at an earlier age in affected individuals with each generation that inherits the disorder.
anticodon
A series of three consecutive nucleotides within a transfer RNA which complement the three nucleotides of a codon within an mRNA transcript. During translation, each tRNA recruited to the ribosome contains a single anticodon triplet that pairs with one or more complementary codons from the mRNA sequence, allowing each codon to specify a particular amino acid to be added to the growing peptide chain. Anticodons containing inosine in the first position are capable of pairing with more than one codon due to a phenomenon known as wobble base pairing.
antiparallel
The orientation of two strands of a double-stranded nucleic acid (and more generally any pair of biopolymers) which are parallel to each other but with opposite directionality. For example, the two complementary strands of a DNA molecule run side-by-side but in opposite directions, with one strand oriented 5'-to-3' and the other 3'-to-5'.
antisense
See template strand.
artificial gene synthesis
autosome
Any chromosome that is not an allosome and hence is not involved in the determination of the sex of an organism. Unlike the sex chromosomes, the autosomes in a diploid cell exist in pairs, with the members of each pair having the same structure, morphology, and genetic loci.

B[]

B-DNA
back mutation
A mutation that reverses the effect of a previous mutation which had inactivated a gene, thus restoring wild-type function.[3]
backcrossing

Also called testcrossing.

The breeding of a hybrid organism with one of its parents or an individual genetically similar to one of its parents, often intentionally as a type of selective breeding, with the aim of producing offspring with a genetic identity which is closer to that of the parent. The reproductive event and the resulting progeny are both referred to as a backcross, often abbreviated in genetics shorthand with the symbol BC.
bacterial artificial chromosome (BAC)
base pair (bp)
A pair of two nucleobases on complementary DNA or RNA strands which are bonded to each other by hydrogen bonds. The ability of consecutive base pairs to stack one upon another contributes to the long-chain double helix structures observed in both double-stranded DNA and double-stranded RNA molecules.
baseline
A measure of the gene expression level of a gene or genes prior to a perturbation in an experiment, as in a negative control. Baseline expression may also refer to the expected or historical measure of expression for a gene.
blunt end

C[]

C-value
The total amount of DNA contained within a haploid nucleus (e.g. a gamete) of a particular organism or species, expressed in number of base pairs or in units of mass (typically picograms); or, equivalently, one-half the amount in a diploid somatic cell. For simple diploid eukaryotes the term is often used interchangeably with genome size, but in certain cases, e.g. in hybrid polyploids descended from parents of different species, the C-value may actually represent two or more distinct genomes contained within the same nucleus. C-values apply only to genomic DNA, and notably exclude extranuclear DNA.
C-value enigma

Also C-value paradox.

A term used to describe a diverse variety of questions regarding the immense variation in nuclear C-value or genome size among eukaryotic species, in particular the observation that genome size does not correlate with the perceived complexity of organisms, nor necessarily with the number of genes they possess; for example, many single-celled protists have genomes containing thousands of times more DNA than the human genome. This was considered paradoxical until the discovery that eukaryotic genomes consist mostly of non-coding DNA, which lacks genes entirely. The focus of the enigma has since shifted to understanding why and how genomes came to be filled with so much non-coding DNA, and why some genomes have a higher gene content than others.
canalisation
The ability of a population to consistently produce the same phenotype regardless of the variability of its environment or the genetic variation within its genome. The concept is most often used in developmental biology to interpret the observation that developmental pathways are frequently shaped by natural selection such that developing cell lineages are "guided" or "canalized" towards a single, definite fate, becoming progressively more resistant to any minor perturbations that may redirect development of the cells away from their initial course.
candidate gene
A gene whose location on a chromosome is associated with a particular phenotype (often a disease-related phenotype), and which is therefore suspected of causing or contributing to the phenotype. Candidate genes are often selected for study based on a priori knowledge or speculation about their functional relevance to the trait or disease being researched.
carrier
An individual who has inherited a recessive allele for a genetic trait or mutation but in whom the trait is not usually expressed or observable in the phenotype. Carriers are usually heterozygous for the recessive allele and therefore still able to pass the allele onto their offspring, where the associated phenotype may reappear if the offspring inherits another copy of the allele. The term is commonly used in medical genetics in the context of a disease-causing recessive allele.
CCAAT box

Also abbreviated as CAAT box or CAT box.

A highly conserved regulatory DNA sequence located approximately 75 base pairs upstream (i.e. -75) of the site of the start of transcription for many eukaryotic genes.[2]
cellular reprogramming
The conversion of a cell from one tissue-specific cell type to another. This involves dedifferentiation to a pluripotent state; an example is the conversion of mouse somatic cells to an undifferentiated embryonic state, which relies on the transcription factors Oct4, Sox2, Myc, and Klf4.[4]
centimorgan (cM)

Also called a map unit (m.u.).

A unit for measuring genetic linkage defined as the distance between chromosomal loci for which the expected average number of intervening chromosomal crossovers in a single generation is 0.01. Though not an actual measure of physical distance, it is used to infer the actual distance between two loci based on the apparent likelihood of a crossover occurring between them.
central dogma of molecular biology
A generalized framework for understanding the flow of genetic information between macromolecules within biological systems. The central dogma outlines the fundamental principle that the sequence information encoded in the three major classes of biopolymerDNA, RNA, and protein—can only be transferred between these three classes in certain ways, and not in others: specifically, information transfer between the nucleic acids and from nucleic acid to protein is possible, but transfer from protein to protein, or from protein back to either type of nucleic acid, is impossible and does not occur naturally.
Possible types of information transfer according to the central dogma of molecular biology. Three general transfers, in red, occur routinely in all living cells: DNA-to-DNA (DNA replication), DNA-to-RNA (transcription), and RNA-to-protein (translation). Three special transfers, in blue, are known to occur only in viruses or in the laboratory: RNA-to-RNA (RNA replication), RNA-to-DNA (reverse transcription), and DNA-to-protein (direct translation without an mRNA intermediate). An additional three transfers are believed not to be possible at all: protein-to-protein, protein-to-RNA, and protein-to-DNA—though it has been argued that there are exceptions by which all three can occur.
centromere
A specialized DNA sequence within a chromosome that links a pair of sister chromatids. The primary function of the centromere is to act as the site of assembly for kinetochores, protein complexes which direct the attachment of spindle fibers to the centromere and facilitate segregation of the chromatids during mitosis.
chimerism
The presence of two or more populations of cells with distinct genotypes in an individual organism, known as a chimera, which has developed from the fusion of cells originating from separate zygotes; each population of cells retains its own genome, such that the organism as a whole is a mixture of genetically non-identical tissues. Genetic chimerism may be inherited (e.g. by the fusion of multiple embryos during pregnancy) or acquired after birth (e.g. by allogeneic transplantation of cells, tissues, or organs from a genetically non-identical donor); in plants, it can result from grafting or errors in cell division. It is similar to but distinct from mosaicism.
chromatid
One copy of a newly copied chromosome, which is joined to the original chromosome by a centromere.
chromatin
A complex of DNA, RNA, and protein found in eukaryotic cells that is the primary substance comprising chromosomes. Chromatin functions as a means of packaging very long DNA molecules into highly organized and densely compacted shapes, which prevents the strands from becoming tangled, reinforces the DNA during cell division, helps to prevent DNA damage, and plays an important role in regulating gene expression and DNA replication.
chromosomal crossover

Also called crossing over.

chromosomal duplication
The duplication of an entire chromosome, as opposed to a segment of a chromosome or an individual gene.
chromosome
A DNA molecule containing part or all of the genetic material of an organism. Chromosomes may be considered a sort of molecular "package" for carrying DNA within the nucleus of cells and, in most eukaryotes, are composed of long strands of DNA coiled with packaging proteins which bind to and condense the strands to prevent them from becoming an unmanageable tangle. Chromosomes are most easily distinguished and studied in their completely condensed forms, which only occur during cell division. Some simple organisms have only one chromosome made of circular DNA, while most eukaryotes have multiple chromosomes made of linear DNA.
cis
cis-dominant mutation
A mutation occurring within a cis-regulatory element (such as an operator) which alters the functioning of a nearby gene or genes on the same strand of DNA. Cis-dominant mutations affect the expression of genes because they occur at sites that control transcription rather than within the genes themselves.
cis-regulatory element (CRE)
Any region of non-coding DNA which regulates the transcription of nearby genes, typically by serving as a binding site for one or more transcription factors. Contrast trans-regulatory element.
cisgenesis
cistron
classical genetics
The branch of genetics based solely on observation of the visible results of reproductive acts, as opposed to that made possible by the modern techniques and methodologies of molecular biology. Contrast molecular genetics.
cloning
The process of producing, either naturally or artificially, individual organisms or cells which are genetically identical to each other. Clones are the result of all forms of asexual reproduction, and cells that undergo mitosis produce daughter cells that are clones of the parent cell and of each other. Cloning may also refer to biotechnology methods which artificially create copies of organisms or cells, or, in molecular cloning, copies of DNA fragments or other molecules.
coactivator
A type of coregulator that increases the expression of one or more genes by binding to an activator.
coding strand

Also sense strand, positive (+) sense strand, and nontemplate strand.

The strand of a double-stranded DNA molecule whose nucleotide sequence corresponds directly to that of the RNA transcript produced during transcription (except that thymine bases are substituted with uracil bases in the RNA molecule). Though it is not itself transcribed, the coding strand is by convention the strand used when displaying a DNA sequence because of the direct analogy between its sequence and the codons of the RNA product. Contrast template strand; see also sense.
codominance
codon
A series of three consecutive nucleotides in a coding region of a nucleic acid sequence. Each of these triplets codes for a particular amino acid or stop signal during protein synthesis. DNA and RNA molecules are each written in a language using four "letters" (four different nucleobases), but the language used to construct proteins includes 20 "letters" (20 different amino acids). Codons provide the key that allows these two languages to be translated into each other. In general, each codon corresponds to a single amino acid (or stop signal). The full set of codons is called the genetic code.
codon usage bias
The preferential use of a particular codon to code for a particular amino acid rather than alternative codons that are synonymous for the same amino acid, as evidenced by differences between organisms in the frequencies of the synonymous codons occurring in their coding DNA. Because the genetic code is degenerate, most amino acids can be specified by multiple codons. Nevertheless, certain codons tend to be overrepresented (and others underrepresented) in different species.
cofactor
Any non-protein organic compound that is bound to an enzyme. Cofactors are required for the initiation of catalysis.
comparative genomic hybridization (CGH)
complementarity
A property of nucleic acid biopolymers whereby two polymeric chains (or "strands") aligned antiparallel to each other will tend to form base pairs consisting of hydrogen bonds between the individual nucleobases comprising each chain, with each of the four types of nucleobase pairing exclusively with one other type of nucleobase; e.g. in double-stranded DNA molecules, A pairs only with T and C pairs only with G. Strands that are paired in such a way, and the bases themselves, are said to be complementary. The degree of complementarity between two strands strongly influences the stability of the duplex molecule; certain sequences may also be internally complementary, which can result in a single strand binding to itself. Complementarity is fundamental to the mechanisms governing DNA replication, transcription, and DNA repair.
complementary DNA (cDNA)
DNA that is synthesized from a single-stranded RNA template (typically mRNA or miRNA) in a reaction catalyzed by the enzyme reverse transcriptase. cDNA is produced both naturally by retroviruses and artificially in certain laboratory techniques, particularly molecular cloning. In bioinformatics, the term may also be used to refer to the sequence of an mRNA transcript expressed as its DNA coding strand counterpart (i.e. with thymine replacing uracil).
complementation
complex trait
See quantitative trait.
conditional expression
The controlled, inducible expression of a transgene, either in vitro or in vivo.
consensus sequence

Also called a canonical sequence.

A calculated order of the most frequent residues (of either nucleotides or amino acids) found at each position in a common sequence alignment and obtained by comparing multiple closely related sequence alignments.
conservation genetics
An interdisciplinary branch of population genetics which applies genetic methods and concepts in an effort to understand the dynamics of genes in populations, principally in order to avoid extinctions and to conserve and restore biodiversity.
conserved sequence
A nucleic acid or protein sequence that is highly similar or identical across many species or within a genome, indicating that it has remained relatively unchanged through a long period of evolutionary time.
constitutive expression
The continuous transcription of a gene, as opposed to facultative expression, in which a gene is only transcribed as needed. A gene that is transcribed continuously is called a constitutive gene.
contig
A continuous stretch of genomic DNA generated by assembling cloned fragments by means of their overlaps.[3]
copy-number variation (CNV)
A phenomenon in which sections of a genome are repeated and the number of repeats varies between individuals in the population, usually as a result of duplication or deletion events that affect entire genes or sections of chromosomes. Copy-number variations play an important role in generating genetic variation within a population.
coregulator
A protein that works together with one or more transcription factors to regulate gene expression.
corepressor
A type of coregulator that reduces (represses) the expression of one or more genes by binding to and activating a repressor.
crossbreeding

Also called outbreeding.

The breeding of purebred parents belonging to two different breeds, varieties, or populations, often intentionally as a type of selective breeding, with the aim of producing offspring which share traits of both parent lineages or which show heterosis. In animal breeding, the progeny of a cross between breeds of the same species is called a crossbreed, whereas the progeny of a cross between different species is called a hybrid.
crosslinking
CRISPR gene editing
cytogenetics
The branch of genetics that studies how chromosomes influence and relate to cell behavior and function, particularly during mitosis and meiosis.
cytosine

Abbreviated in shorthand with the letter C.

One of the four main nucleobases present in DNA and RNA. Cytosine forms a base pair with guanine.

D[]

degeneracy
The redundancy of the genetic code, exhibited as the multiplicity of different codons that specify the same amino acid. For example, in the standard genetic code, the amino acid serine is specified by six unique codons (UCA, UCG, UCC, UCU, AGU, and AGC). Codon degeneracy accounts for the existence of synonymous mutations.
deletion

Denoted in shorthand with the symbol Δ.

A type of mutation in which one or more bases are removed from a nucleic acid sequence.
deoxyribonucleic acid (DNA)
A polymeric nucleic acid molecule composed of a series of deoxyribonucleotides which incorporate a set of four nucleobases: adenine (A), guanine (G), cytosine (C), and thymine (T). DNA is most often found in the form of a "double helix", which consists of two paired complementary DNA molecules resembling a ladder that has been twisted. The "rungs" of the ladder are made of pairs of nucleobases.
deoxyribose
dicentric
(of a linear chromosome or chromosome fragment) Having two centromeres instead of the normal one.[2]
diploid

Denoted in shorthand with the somatic number 2n.

(of a cell or organism) Having two homologous copies of each chromosome. Contrast haploid and polyploid.
directionality
distance measure
Any quantity used to measure the dissimilarity between the gene expression levels of different genes.[5]
DNA condensation
The process of compacting very long DNA molecules into densely packed, orderly configurations such as chromosomes, either in vivo or in vitro.
DNA fingerprinting
DNA microarray
A high-throughput technology used to measure expression levels of mRNA transcripts or to detect certain changes in the nucleotide sequence. It consists of an array of thousands of microscopic spots of DNA oligonucleotides, called features, each containing picomoles of a specific DNA sequence. This can be a short section of a gene or other DNA element that is used as a probe to hybridize a cDNA, cRNA or genomic DNA sample (called a target) under high-stringency conditions. Probe-target hybridization is usually detected and quantified by fluorescence-based detection of fluorophore-labeled targets.
DNA polymerase
Any of a class of enzymes that synthesizes DNA molecules from individual deoxyribonucleotides. DNA polymerases are essential for DNA replication and usually work in pairs to create identical copies of the two strands of an original double-stranded molecule. They build long chains of DNA by adding nucleotides one at a time to the 3'-end of a DNA strand, usually relying on the template provided by the complementary strand to copy the nucleotide sequence faithfully.
DNA repair
The collection of processes by which a cell identifies and corrects structural damage or mutations in the DNA molecules that encode its genome. The ability of a cell to repair its DNA is vital to the integrity of the genome and the normal functionality of the organism.
DNA replication
The process by which a DNA molecule copies itself, producing two identical copies of one original DNA molecule.
DNA sequencing
The process of determining, by any of a variety of different methods and technologies, the order of the bases in the long chain of nucleotides that constitutes a sequence of DNA.
DNA turnover
Any mechanism by which DNA sequences are exchanged non-reciprocally (e.g. via gene conversion, transposition, or unequal crossing-over) that causes continual fluctuations in the copy number of DNA motifs during an organism's lifetime. Such mechanisms are often major drivers of speciation between populations.[6]
dominance
A relationship between the alleles of a gene in which one allele produces an effect on phenotype that overpowers or "masks" the contribution of another allele at the same locus; the first allele and its associated phenotypic trait are said to be dominant, and the second allele and its associated trait are said to be recessive. Often, the dominant allele codes for a functional protein while its recessive counterpart does not. Dominance is not an inherent property of any allele or phenotype, but simply describes its relationship to one or more other alleles or phenotypes; it is possible for one allele to be simultaneously dominant over a second allele, recessive to a third, and codominant to a fourth. In genetics shorthand, dominant alleles are often represented by a single uppercase letter (e.g. "A", in contrast to the recessive "a").
dosage compensation
Any mechanism by which organisms neutralize the large difference in gene dosage caused by the presence of differing numbers of sex chromosomes in the different sexes, thereby equalizing the expression of sex-linked genes so that the members of each sex receive the same or similar amounts of the products of such genes. An example is X-inactivation in female mammals.
double helix
double-strand break (DSB)
The loss of continuity of the phosphate-sugar backbone in both strands of a double-stranded DNA molecule, in particular when the two breaks occur at sites that are directly across from or very close to each other on the complementary strands.[6] Contrast single-strand break.
double-stranded DNA (dsDNA)
Any DNA molecule that is composed of two antiparallel, complementary nucleotide polymers, or "strands", which are bonded together by hydrogen bonds between the complementary nucleobases. Though it is possible for DNA to exist as a single strand, it is generally more stable and more common in double-stranded form. In most cases, the complementary base pairing causes the twin strands to coil around each other in the shape of a double helix.
downregulation

Also called repression or suppression.

Any process, natural or artificial, which decreases the level of gene expression of a certain gene. A gene which is observed to be expressed at relatively low levels (such as by detecting lower levels of its mRNA transcripts) in one sample compared to another sample is said to be downregulated. Contrast upregulation.
downstream
Towards or closer to the 3'-end of a chain of nucleotides, or the C-terminus of a peptide chain. Contrast upstream.
duplication
dyad
See sister chromatids.

E[]

ecological genetics
The study of genetics as it pertains to the ecology and fitness of natural populations of living organisms.
emergenesis
The quality of genetic traits that results from a specific configuration of interacting genes, rather than simply their combination.
endonuclease
Any enzyme whose activity is to cleave phosphodiester bonds within a chain of nucleotides, including those that cleave relatively nonspecifically (without regard to sequence) and those that cleave only at very specific sequences (so-called restriction endonucleases). When recognition of a specific sequence is required, endonucleases make their cuts in the middle of the sequence. Contrast exonuclease.
enhancer
A region of DNA near a gene that can be bound by an activator to increase gene expression or by a repressor to decrease expression.
epigenetics
episome
1.  Another name for a plasmid, especially one that is capable of integrating into a chromosome.
2.  In eukaryotes, any non-integrated extrachromosomal circular DNA molecule that is stably maintained and replicated in the nucleus simultaneously with the rest of the host cell. Such molecules may include viral genomes, bacterial plasmids, and aberrant chromosomal fragments.
epistasis
The collective action of multiple genes interacting during gene expression. A form of gene action, epistasis can be either additive or multiplicative in its effects on specific phenotypic traits.
euploidy
The condition of a cell or organism having an abnormal number of complete sets of chromosomes, possibly excluding the sex chromosomes. Euploidy differs from aneuploidy, in which a cell or organism has an abnormal number of one or more specific individual chromosomes.
evolution
The change in the heritable characteristics of biological populations over successive generations. In the most traditional sense, it occurs by changes in the frequencies of alleles in a population's gene pool.
exome
The entire set of exons within a particular genome, including untranslated regions of mature mRNAs as well as coding regions.
exon
Any part of a gene that encodes a part of the final mature mRNA produced by that gene after introns have been removed by alternative splicing. The term refers to both the sequence as it exists within a DNA molecule and to the corresponding sequence in RNA transcripts.
exon skipping
exonuclease
Any enzyme whose activity is to cleave phosphodiester bonds within a chain of nucleotides, including those that cleave only upon recognition of a specific sequence (so-called restriction exonucleases). Exonucleases make their cuts at either the 3' or 5'-end of the sequence (rather than in the middle, as with endonucleases).
exosome complex
expression vector

Also called an expression construct.

A type of vector, usually a plasmid or viral vector, designed specifically for the expression of a transgene insert in a target cell, rather than for some other purpose such as cloning.
Plasmid map of a 3,756-bp expression vector used in the expression of a transgene that makes green fluorescent protein (GFP). The vector also includes a gene for the lac repressor (lacI) and a gene conferring resistance to the antibiotic kanamycin (KanR), as well as various promoters for driving the expression of these genes.
expressivity
For a given genotype associated with a variable non-binary phenotype, the proportion of individuals with that genotype who show or express the phenotype to a specified extent, usually given as a percentage. Because of the many complex interactions that govern gene expression, the same allele may produce a wide variety of possible phenotypes of differing qualities or degrees in different individuals; in such cases, both the phenotype and genotype may be said to show variable expressivity. Expressivity attempts to quantify the range of possible levels of phenotypic variation in a population of individuals expressing the phenotype of interest. Compare penetrance.
extrachromosomal DNA

Also called extranuclear DNA or cytoplasmic DNA.

Any DNA that is not found in chromosomes or in the nucleus of a cell and hence is not genomic DNA. This may include the DNA contained in plasmids or organelles such as mitochondria or chloroplasts, or, in the broadest sense, DNA introduced by viral infection. Extrachromosomal DNA usually shows significant structural differences from nuclear DNA in the same organism.

F[]

facultative expression
The transcription of a gene only as needed, as opposed to constitutive expression, in which a gene is transcribed continuously. A gene that is transcribed as needed is called a facultative gene.
fluorescence in situ hybridization (FISH)
fixation
The process by which a single allele for a particular gene with multiple different alleles increases in frequency in a given population such that it becomes permanently established at 100% frequency – that is, the only allele at that locus within the population's gene pool. In the absence of mutation and heterozygote advantage, any given allele is eventually destined to become either permanently fixed over all other variants or completely lost from the population, though how long this takes depends on selection pressures and chance fluctuations in allele frequencies.
forward genetics
frameshift mutation
A type of mutation in a nucleic acid sequence caused by the insertion or deletion of a number of nucleotides that is not divisible by three. Because of the triplet nature by which nucleotides code for amino acids, a mutation of this sort causes a shift in the reading frame of the nucleotide sequence, resulting in the sequence of codons downstream of the mutation site being completely different from the original.
Functional Genomics Data (FGED) Society

Formerly known by the abbreviation MGED.

An organization that works with others "to develop standards for biological research data quality, annotation and exchange" as well as software tools that facilitate their use.[7]

G[]

G banding

Also Giemsa banding or G-banding.

A technique used in cytogenetics to produce a visible karyotype by staining the condensed chromosomes with Giemsa stain. The staining produces consistent and identifiable patterns of dark and light "bands" in regions of chromatin, which allows specific chromosomes to be easily distinguished.
gamete
gene
Any segment or set of segments of a nucleic acid molecule that contains the information necessary to produce a functional RNA transcript in a controlled manner. In living organisms, genes are often considered the fundamental units of heredity and are typically encoded in DNA. A particular gene can have multiple different versions, or alleles, and a single gene can result in a gene product that influences many different phenotypes.
gene dosage
The number of copies of a particular gene present in a genome. Gene dosage directly influences the amount of gene product a cell is able to express, though a variety of controls have evolved which tightly regulate gene expression. Changes in gene dosage caused by mutations include copy-number variations.
gene drive
gene duplication

Also called gene amplification.

A type of mutation defined as any duplication of a region of DNA that contains a gene. Compare chromosomal duplication.
gene expression
The process by which the information encoded in a gene is converted into a form useful for the cell. The first step is transcription, which produces a messenger RNA molecule complementary to the DNA molecule in which the gene is encoded. For protein-coding genes, the second step is translation, in which the messenger RNA is read by the ribosome to produce a protein.
Gene Expression Omnibus (GEO)
A database for gene expression managed by the National Center for Biotechnology Information. These high-throughput functional genomics data are derived from experimental data from chips and next-generation sequencing.[8][9]
gene mapping
Any of a variety of methods used to precisely identify the location of a particular gene within a DNA molecule (such as a chromosome) and/or the physical or linkage distances between it and other genes.
gene pool
The sum of all of the various alleles shared by the members of a single population.
gene product
Any of the biochemical material resulting from the expression of a gene, most often interpreted as the functional mRNA transcript produced by transcription of the gene or the fully constructed protein produced by translation of the transcript. A measurement of the quantity of a given gene product that is detectable in a cell or tissue is sometimes used to infer how active the corresponding gene is.
gene regulation
The broad range of mechanisms used by cells to increase or decrease the production or expression of specific gene products, such as RNA or proteins. Gene regulation increases an organism's versatility and adaptability by allowing its cells to express different gene products when required by changes in its environment. In multicellular organisms, the regulation of gene expression also drives cellular differentiation and morphogenesis in the embryo, enabling the creation of a diverse array of cell types from the same genome.
gene silencing
Any mechanism of gene regulation which drastically reduces or completely prevents the expression of a particular gene. Gene silencing may occur naturally during either transcription or translation. Laboratory techniques often exploit natural silencing mechanisms to achieve gene knockdown.
gene therapy
The insertion of a functional or wild-type gene or part of a gene into an organism (especially a patient) with the intention of correcting a genetic defect, either by direct substitution of the defective gene or by supplementation with a second, functional version.[6]
gene trapping
A high-throughput technology used to simultaneously inactivate, identify, and report the expression of a target gene in a mammalian genome by introducing an insertional mutation consisting of a promoterless reporter gene and/or a selectable genetic marker flanked by an upstream splice site and a downstream polyadenylated termination sequence.
generation
1.  In any given organism, a single reproductive cycle, or the phase between two consecutive reproductive events, i.e. between an individual organism's reproduction and that of the progeny of that reproduction; or the actual or average length of time required to complete a single reproductive cycle, either for a particular lineage or for a population or species as a whole.
2.  In a given population, those individuals (often but not necessarily living contemporaneously) who are equally removed from a given common ancestor by virtue of the same number of reproductive events having occurred between them and the ancestor.[6]
genetic association
The co-occurrence within a population of one or more alleles or genotypes with a particular phenotypic trait more often than might be expected by chance alone; such statistical correlation may be used to infer that the alleles or genotypes are responsible for producing the given phenotype.
genetic background
genetic code
A set of rules by which information encoded within nucleic acids is translated into proteins by living cells. These rules define how sequences of nucleotide triplets called codons specify which amino acid will be added next during protein synthesis. The vast majority of living organisms use the same genetic code (sometimes referred to as the "standard" genetic code) but variant codes do exist.
genetic counseling
The process of advising individuals or families who are affected by or at risk of developing genetic disorders in order to help them understand and adapt to the physiological, psychological, and familial implications of genetic contributions to disease. Genetic counseling integrates genetic testing, genetic genealogy, and genetic epidemiology.[10]
genetic disorder
genetic distance
A measure of the genetic divergence between species, populations within a species, or individuals, used especially in phylogenetics to express either the time elapsed since the existence of a common ancestor or the degree of differentiation in the DNA sequences comprising the genomes of each population or individual.
genetic diversity

Sometimes used interchangeably with genetic variation.

The total number of genetic traits or characteristics in the genetic make-up of a population, species, or other group of organisms. It is often used as a measure of the adaptability of a group to changing environments. Genetic diversity is similar to, though distinct from, genetic variability.
genetic drift

Also called allelic drift or the Sewall Wright effect.

A change in the frequency with which an existing allele occurs in a population due to random variation in the distribution of alleles from one generation to the next. It is often interpreted as the role that random chance plays in determining whether a given allele becomes more or less common with each generation, regardless of the influence of natural selection. Genetic drift may cause certain alleles, even otherwise advantageous ones, to disappear completely from the gene pool, thereby reducing genetic variation, or it may cause initially rare alleles, even neutral or deleterious ones, to become much more frequent or even fixed.
genetic engineering

Also called genetic modification or genetic manipulation.

The direct, deliberate manipulation of an organism's genetic material using any of a variety of biotechnology methods, including the insertion or removal of genes, the transfer of genes within and between species, the mutation of existing sequences, and the construction of novel sequences using artificial gene synthesis. Genetic engineering encompasses a broad set of technologies by which the genetic composition of individual cells, tissues, or entire organisms may be altered for various purposes, commonly in order to study the functions and expression of individual genes, to produce hormones, vaccines, and other drugs, and to create genetically modified organisms for use in research and agriculture.
genetic epidemiology
genetic genealogy
The use of genealogical DNA testing in combination with traditional genealogical methods to infer the level and type of genetic relationships between individuals, find ancestors, and construct family trees, genograms, or other genealogical charts.
genetic hitchhiking

Also called genetic draft or the hitchhiking effect.

A type of linked selection by which the positive selection of an allele undergoing a selective sweep causes alleles for different genes at nearby loci to change frequency as well, allowing them to "hitchhike" to fixation along with the positively selected allele. If selection at the first locus is strong enough, neutral or even slightly deleterious alleles within the same linkage group may undergo the same positive selection because the physical distance between the nearby loci is small enough that a recombination event is unlikely to occur between them. Genetic hitchhiking is often considered the opposite of background selection.
genetic marker
A specific, easily identifiable, and usually highly polymorphic gene or other DNA sequence with a known location on a chromosome that can be used to identify the individual or species possessing it.
genetic recombination
Any reassortment or exchange of genetic material within an individual organism or between individuals of the same or different species, especially that which creates genetic variation. In the broadest sense, the term encompasses a diverse class of naturally occurring mechanisms by which nucleic acid sequences are copied or physically transferred into different genetic environments, including homologous recombination during meiosis or mitosis or as a normal part of DNA repair; horizontal gene transfer events such as bacterial conjugation, viral transduction, or transformation; or errors in DNA replication or cell division. Artificial recombination is central to many genetic engineering techniques which produce recombinant DNA.
genetic regulatory network (GRN)
A graph that represents the regulatory complexity of gene expression. The vertices (nodes) are represented by various regulatory elements and gene products while the edges (links) are represented by their interactions. These network structures also represent functional relationships by approximating the rate at which genes are transcribed.
genetic testing

Also called DNA testing or genetic screening.

A broad class of various procedures used to identify features of an individual's particular chromosomes, genes, or proteins in order to determine parentage or ancestry, diagnose vulnerabilities to heritable diseases, or detect mutant alleles associated with increased risks of developing genetic disorders. Genetic testing is widely used in human medicine, agriculture, and biological research.
genetic variability

Sometimes used interchangeably with genetic variation.

The formation or the presence of individuals differing in genotype within a population or other group of organisms, as opposed to individuals with environmentally induced differences, which cause only temporary, non-heritable changes in phenotype. Barring other limitations, a population with high genetic variability has a greater potential for successful adaptation to changing environmental conditions than a population with low genetic variability. Genetic variability is similar to, though distinct from, genetic diversity.
genetic variation

Sometimes used interchangeably with genetic diversity and genetic variability.

The genetic differences both within and between populations, species, or other groups of organisms. It is often visualized as the variety of different alleles in the gene pools of different populations.
genetically modified organism (GMO)
Any organism whose genetic material has been altered using genetic engineering techniques, particularly in a way that does not occur naturally by mating or by natural genetic recombination.
genetics
The field of biology that studies genes, genetic variation, and heredity in living organisms.
genome
The entire complement of genetic material contained within the chromosomes of an organism, organelle, or virus. The term is also used to refer to the collective set of genetic loci shared by every member of a population or species, regardless of the different alleles that may be present at these loci in different individuals.
genome size
The total amount of DNA contained within one copy of a genome, typically measured by mass (in picograms or daltons) or by the total number of base pairs (in kilobases or megabases). For diploid organisms, genome size is often used interchangeably with C-value.
genomic DNA (gDNA)

Also called chromosomal DNA.

The DNA contained in chromosomes, as opposed to the extrachromosomal DNA contained in separate structures such as plasmids or organelles such as mitochondria or chloroplasts.
genomic imprinting
An epigenetic phenomenon that causes genes to be expressed in a manner dependent upon the particular parent from which the gene was inherited. It occurs when epigenetic marks such as DNA or histone methylation are established or "imprinted" in the germ cells of a parent organism and subsequently maintained through cell divisions in the somatic cells of the organism's progeny; as a result, a gene in the progeny that was inherited from the father may be expressed differently than another copy of the same gene that was inherited from the mother.
genomics
An interdisciplinary field that studies the structure, function, evolution, mapping, and editing of entire genomes, as opposed to individual genes.
genotoxicity
The ability of certain chemical agents to cause damage to genetic material within a living cell (e.g. through single- or double-stranded breaks, crosslinking, or point mutations), which may or may not result in a permanent mutation. Though all mutagens are genotoxic, not all genotoxic compounds are mutagenic.
genotype
The entire complement of alleles present in a particular individual's genome, which gives rise to the individual's phenotype.
genotype frequency
genotyping
The process of determining differences in the genotype of an individual by examining the DNA sequences in the individual's genome using bioassays and comparing them to another individual's sequences or a reference sequence.
germ cell
Any biological cell that gives rise to the gametes of an organism that reproduces sexually. Germ cells are the vessels for the genetic material which will ultimately be passed on to the organism's descendants and are usually distinguished from somatic cells, which are entirely separate from the germ line.
germ line
1.  In multicellular organisms, the population of cells which are capable of passing on their genetic material to the organism's progeny and are therefore (at least theoretically) distinct from somatic cells. The cells of the germ line are called germ cells.
2.  The lineage of germ cells, spanning many generations, that contains the genetic material which has been passed on to an individual from its ancestors.
guanine

Abbreviated in shorthand with the letter G.

One of the four main nucleobases present in DNA and RNA. Guanine forms a base pair with cytosine.
guanine-cytosine content

Also abbreviated GC-content.

The proportion of nitrogenous bases in a nucleic acid that are either guanine (G) or cytosine (C), typically expressed as a percentage. DNA and RNA molecules with higher GC-content are generally more thermostable than those with lower GC-content due to molecular interactions that occur during base stacking.[11]

H[]

haplodiploidy
A type of sex-determination system in which sex is determined by the number of sets of chromosomes an individual possesses: offspring which develop from fertilized eggs are females and diploid, while offspring which develop from unfertilized eggs are males and haploid, with half as many chromosomes as the females. Haplodiploidy is common to all members of the insect order Hymenoptera and several other insect taxa.
haplogroup
haploid

Denoted in shorthand with the somatic number n.

(of a cell or organism) Having one copy of each chromosome, with each copy not being part of a pair. Contrast diploid and polyploid.
haploinsufficiency
haplotype
A set of alleles in an individual organism that were inherited together from a single parent.
helicase
Any of a class of ATP-dependent enzymes capable of unwinding the DNA double helix at a replication fork so that a DNA polymerase may advance during DNA replication.[6]
hemizygous
In a diploid organism, having just one allele at a given genetic locus (where there would ordinarily be two). Hemizygosity may be observed when only one copy of a chromosome is present in a normally diploid cell or organism, or when a segment of a chromosome containing one copy of an allele is deleted, or when a gene is located on a sex chromosome in the heterogametic sex (in which the sex chromosomes do not exist in matching pairs); for example, in human males with normal chromosomes, almost all X-linked genes are said to be hemizygous because there is only one X chromosome and few of the same genes exist on the Y chromosome.
heredity

Also called inheritance.

The storage, transfer, and expression of molecular information in biological organisms,[6] as manifested by the passing on of phenotypic traits from parents to their offspring, either through sexual or asexual reproduction. Offspring cells or organisms are said to inherit the genetic information of their parents.
heritability
1.  The ability to be inherited.
2.  A statistic used in quantitative genetics that estimates the proportion of variation within a given phenotypic trait that is due to genetic variation between individuals in a particular population. Heritability is estimated by comparing the individual phenotypes of closely related individuals in the population.
heterochromosome
See allosome.
heterologous expression
The expression of a foreign gene or any other DNA sequence within a host organism which does not naturally contain the same gene. Insertion of foreign transgenes into heterologous hosts using recombinant vectors is a common biotechnology method for studying gene structure and function.
heterosis

Also called hybrid vigor and outbreeding enhancement.

heterozygous
In a diploid organism, having two different alleles at a given genetic locus. In genetics shorthand, heterozygous genotypes are represented by a pair of non-matching letters or symbols, often an uppercase letter (indicating a dominant allele) and a lowercase letter (indicating a recessive allele), such as "Aa" or "Bb". Contrast homozygous.
histone
Any of a class of highly alkaline proteins responsible for packaging nuclear DNA into structural units called nucleosomes in eukaryotic cells. Histones are the chief protein components of chromatin, where they associate into complexes which act as "spools" around which the linear DNA molecule winds. They play a major role in gene regulation and expression.
holocentric
(of a linear chromosome or chromosome fragment) Having no single centromere but rather multiple kinetochore assembly sites dispersed along the entire length of the chromosome. During cell division, the chromatids of holocentric chromosomes move apart in parallel and do not form the classical V-shaped structures typical of monocentric chromosomes.
homologous chromosomes

Also called homologs.

A set of two matching chromosomes, one maternal and one paternal, which pair up with each other inside the nucleus during meiosis. They have the same genes at the same loci, but may have different alleles.
homologous recombination
A type of genetic recombination in which nucleotide sequences are exchanged between two similar or identical ("homologous") molecules of DNA, especially that which occurs between homologous chromosomes. The term may refer to the recombination that occurs as a part of any of a number of distinct cellular processes, most commonly DNA repair or chromosomal crossover during meiosis in eukaryotes and horizontal gene transfer in prokaryotes. Contrast nonhomologous recombination.
homozygous
In a diploid organism, having two identical alleles at a given genetic locus. In genetics shorthand, homozygous genotypes are represented by a pair of matching letters or symbols, such as "AA" or "aa". Contrast heterozygous.
horizontal gene transfer (HGT)
housekeeping gene
Any constitutive gene that is transcribed at a relatively constant level across many or all known conditions. Such a gene's products typically serve functions critical to the maintenance of the cell. It is generally assumed that their expression is unaffected by experimental conditions.
Human Genome Project (HGP)
hybrid
The offspring that results from combining the qualities of two organisms of different genera, species, breeds, or varieties through sexual reproduction. Hybrids may occur naturally or artificially, as during selective breeding of domesticated animals and plants. Reproductive barriers typically prevent hybridization between distantly related organisms, or at least ensure that hybrid offspring are sterile, but fertile hybrids may result in speciation.
hybridization
1.  The process by which a hybrid organism is produced from two organisms of different genera, species, breeds, or varieties.
2.  The process by which a single-stranded DNA or RNA preparation is added to an array surface, in solution, and potentially anneals to the complementary probe. Note that with respect to a gene expression assay, hybridization refers to a step in the experimental paradigm, while in molecular biology or genetics, the term refers to the chemical process.
hybridization probe

I[]

idiochromosome
See allosome.
in situ hybridization
inbreeding
Sexual reproduction between breeds or individuals that are closely related genetically. Inbreeding results in homozygosity, which can increase both the probability of offspring being affected by deleterious recessive traits and the probability of fixing beneficial traits within the breeding population. Contrast outbreeding.
incomplete dominance
indel
A term referring to either an insertion or a deletion of one or more bases in a nucleic acid sequence.
inducer
A protein that binds to a repressor (to disable it) or to an activator (to enable it).
inducible gene
A gene whose expression is either responsive to environmental change or dependent on its host cell's position within the cell cycle.
inheritance
See heredity.
inosine
insertion
A type of mutation in which one or more bases are added to a nucleic acid sequence.
insulator
A specific DNA sequence that prevents a gene from being influenced by the activation or repression of nearby genes.
intercalating agent
Any chemical compound (e.g. acridine dyes) that disrupts the alignment and pairing of bases in the complementary strands of a DNA molecule by inserting itself between the bases.[2]
intergenic region (IGR)
Any sequence of non-coding DNA that is located between functional genes.
interphase
All stages of the cell cycle excluding cell division. A typical cell spends most of its life in interphase, during which it conducts everyday metabolic activities as well as the complete replication of its genome in preparation for mitosis or meiosis.
intragenic region
See intron.
intragenic suppression
intragenomic conflict
introgression

Also called introgressive hybridization.

The movement of a gene from the gene pool of one population or species into that of another population by the repeated backcrossing of hybrids of the two populations with one of the parent populations. Introgression is a ubiquitous and important source of genetic variation in natural populations, but may also be practiced intentionally in the cultivation of domesticated plants and animals.
intron

Also intragenic region.

Any nucleotide sequence within a functional gene that is removed by RNA splicing during post-transcriptional modification of the mRNA primary transcript and is therefore absent from the final mature mRNA. The term refers to both the sequence as it exists within a DNA molecule and to the corresponding sequence in RNA transcripts. Contrast exon.
isochromosome
A type of abnormal chromosome in which the arms of the chromosome are mirror images of each other. Isochromosome formation is equivalent to simultaneous duplication and deletion events such that two copies of either the long arm or the short arm comprise the resulting chromosome.
isomeric genes
Two or more genes that are equivalent and redundant in the sense that, despite coding for distinct gene products, they each result in the same phenotype when set within the same genetic background. If several isomeric genes are present in a single genotype they may be either cumulative or non-cumulative in their contributions to the phenotype.[6]

J[]

junctional diversity
junk DNA

K[]

Ka/Ks ratio
karyotype
The number and appearance of chromosomes within the nucleus of a eukaryotic cell, especially as depicted in an organized photomicrograph known as a karyogram or idiogram (in pairs and ordered by size and by position of the centromere). The term is also used to refer to the complete set of chromosomes in a species or individual organism or to any test that detects this complement or measures the chromosome number.
The karyotype of a typical human male, as visualized in a karyogram using Giemsa staining
knockdown
A genetic engineering technique by which the normal rate of expression of one or more of an organism's genes is reduced, either through direct modification of a DNA sequence or through treatment with a reagent such as a short DNA or RNA oligonucleotide with a sequence complementary to either an mRNA transcript or a gene.
knockin
knockout
A genetic engineering technique in which an organism is modified to carry genes that have been made inoperative ("knocked out"), such that their expression is disrupted at some point in the pathway that produces their gene products and the organism is deprived of their normal effects. Contrast knockin.

L[]

lagging strand
On the lagging strand template, a primase "reads" the template DNA and initiates synthesis of a short complementary RNA primer. A DNA polymerase extends the primed segments, forming Okazaki fragments. The RNA primers are then removed and replaced with DNA, and the fragments of DNA are joined together by DNA ligase.
Law of Dominance and Uniformity
One of three fundamental principles of Mendelian inheritance, which states that different alleles of the same gene may be dominant or recessive relative to others, and that an organism with at least one dominant allele will uniformly display the phenotype associated with the dominant allele.
Law of Independent Assortment
One of three fundamental principles of Mendelian inheritance, which states that genes responsible for different phenotypic traits are segregated independently during meiosis. Linked genes are a notable exception to this rule.
Law of Segregation
One of three fundamental principles of Mendelian inheritance, which states that during meiosis, the alleles of each gene segregate from each other such that each resulting gamete carries only one allele of each gene.
leading strand
linkage
The tendency of DNA sequences which are physically near to each other on the same chromosome to be inherited together during meiosis. Because the physical distance between them is relatively small, the chance that any two nearby parts of a DNA sequence (often loci or genetic markers) will be separated on to different chromatids during chromosomal crossover is statistically very low; such loci are then said to be more linked than loci that are farther apart. Loci that exist on entirely different chromosomes are said to be perfectly unlinked. The standard unit for measuring genetic linkage is the centimorgan (cM).
linkage disequilibrium
locus

Plural loci.

A specific, fixed position on a chromosome where a particular gene or genetic marker resides.
LOD score
long arm

Denoted in shorthand with the symbol q.

In condensed chromosomes where the positioning of the centromere creates two segments or "arms" of unequal length, the longer of the two arms of a chromatid. Contrast short arm.
lyonization
See X-inactivation.

M[]

major groove
map unit (m.u.)
See centimorgan.
matroclinous
medical genetics
meiosis
A specialized type of cell division that occurs exclusively in sexually reproducing eukaryotes, during which DNA replication is followed by two consecutive rounds of division to ultimately produce four genetically unique haploid daughter cells, each with half the number of chromosomes as the original diploid parent cell. Meiosis only occurs in cells of the sex organs, and serves the purpose of generating haploid gametes such as sperm, eggs, or spores, which are later fused during fertilization. The two meiotic divisions, known as Meiosis I and Meiosis II, also include various genetic recombination events between homologous chromosomes.
Mendelian inheritance
A theory of biological inheritance based on a set of principles originally proposed by Gregor Mendel in 1865 and 1866. Mendel derived three generalized laws about the genetic basis of inheritance which, together with several theories developed by later scientists, are considered the foundation of classical genetics. Contrast non-Mendelian inheritance.
messenger RNA (mRNA)
metabolome
metacentric
(of a linear chromosome or chromosome fragment) Having a centromere positioned in the middle of the chromosome, resulting in chromatid arms of approximately equal length.[2]
metagenomics

Also called environmental genomics, ecogenomics, and community genomics.

The study of genetic material recovered directly from environmental samples, as opposed to organisms cultivated in laboratory cultures.
metaphase
The stage of mitosis and meiosis that occurs after prometaphase and before anaphase, during which the centromeres of the replicated chromosomes align along the equator of the cell, with each kinetochore attached to the mitotic spindle.
MicroArray and Gene Expression (MAGE)
A group that "aims to provide a standard for the representation of DNA microarray gene expression data that would facilitate the exchange of microarray information between different data systems".[12]
microchromosome
A type of very small chromosome, generally less than 20,000 base pairs in size, present in the karyotypes of some organisms.
microRNA (miRNA)
microsatellite

Also called a short tandem repeat (STR) and simple sequence repeat (SSR).

A type of satellite DNA consisting of a relatively short sequence of tandem repeats, in which certain motifs (ranging in length from one to six or more bases) are repeated, typically 5–50 times. Microsatellites are widespread throughout most organisms' genomes and tend to have higher mutation rates than other regions. They are classified as variable number tandem repeat (VNTR) DNA, along with longer minisatellites.
Minimum information about a microarray experiment (MIAME)
A commercial standard developed by FGED and based on MAGE in order to facilitate the storage and sharing of gene expression data.[13][14]
Minimal information about a high-throughput sequencing experiment (MINSEQE)
A commercial standard developed by FGED for the storage and sharing of high-throughput sequencing data.[15]
minisatellite
minor allele frequency (MAF)
minor groove
missense mutation
A type of point mutation which results in a codon that codes for a different amino acid than in the unmutated sequence.
mitochondrial DNA (mtDNA)
mitosis
In eukaryotic cells, the part of the cell cycle during which the division of the nucleus takes place and replicated chromosomes are separated into two distinct nuclei. Mitosis is generally preceded by the S stage of interphase, when the cell's DNA is replicated, and either occurs simultaneously with or is followed by cytokinesis, when the cytoplasm and cell membrane are divided into two new daughter cells.
mobile genetic element (MGE)
Any genetic material that can move between different parts of a genome or be transferred from one species or replicon to another within a single generation. The many types of MGEs include transposable elements (transposons), bacterial plasmids, bacteriophage elements which integrate into host genomes by viral transduction, and self-splicing introns.
mobilome
molecular genetics
A branch of genetics that employs methods of molecular biology to study the structure and function of genes and gene products at the molecular level.
monocentric
(of a linear chromosome or chromosome fragment) Having only one centromere. Contrast dicentric and holocentric.
monosomy
The abnormal and frequently pathological presence of only one chromosome of a normal diploid pair. It is a type of aneuploidy.
mosaicism
The presence of two or more populations of cells with different genotypes in an individual organism which has developed from a single fertilized egg. A mosaic organism can result from many kinds of genetic phenomena, including nondisjunction of chromosomes, endoreplication, or mutations in individual stem cell lineages during the early development of the embryo. Mosaicism is similar to but distinct from chimerism.
multiple cloning site (MCS)

Also called a polylinker.

mutagen
Any physical or chemical agent that changes the genetic material, usually DNA, of an organism and thereby increases the frequency of mutations above natural background levels.
mutagenesis
1.  The process by which the genetic information of an organism is changed, resulting in a mutation. Mutagenesis may occur spontaneously or as a result of exposure to a mutagen.
2.  In molecular biology, any laboratory technique by which one or more genetic mutations are deliberately engineered in order to produce a mutant gene, regulatory element, gene product, or genetically modified organism so that the functions of a genetic locus, process, or product can be studied in detail.
mutation
Any permanent change in the nucleotide sequence of a strand of DNA or RNA. Mutations play a role in both normal and abnormal biological processes, including evolution. They can result from replication errors, molecular damage, or manipulations by mobile genetic elements. Repair mechanisms have evolved in many organisms to correct them.

N[]

neutral mutation
1.  Any mutation of a nucleic acid sequence that is neither beneficial nor detrimental to the ability of an organism to survive and reproduce.
2.  Any mutation in which natural selection does not affect the spread of the mutation within a population.
nitrogenous base

Sometimes used interchangeably with nucleobase or simply base.

Any organic compound containing a nitrogen atom that has the chemical properties of a base. A set of five distinct nitrogenous bases – adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U) – are especially relevant to biology because they are components of nucleotides, which in turn are the primary monomers that make up nucleic acids.
non-coding DNA
Any segment of DNA that does not encode a sequence that may ultimately be transcribed and translated into a protein. In most organisms, only a small fraction of the genome consists of protein-coding DNA, though the proportion varies greatly between species. Some non-coding DNA may still be transcribed into functional non-coding RNA (as with transfer RNAs) or may serve important developmental or regulatory purposes; other regions (as with so-called "junk DNA") appear to have no known biological function.
non-coding RNA (ncRNA)
Any molecule of RNA that is not ultimately translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often referred to as an "RNA gene". Numerous types of non-coding RNAs essential to normal genome function are produced constitutively, including transfer RNA (tRNA), ribosomal RNA (rRNA), microRNA (miRNA), and small interfering RNA (siRNA); other non-coding RNAs (sometimes described as "junk RNA") have no known function and are likely the product of spurious transcription.
non-homologous end joining (NHEJ)
non-Mendelian inheritance
Any pattern of inheritance in which traits do not segregate in accordance with Mendel's laws, which describe the readily observable inheritance of discretely variable phenotypic traits influenced by single genes on nuclear chromosomes. Though they correctly explain many basic observations of inheritance, Mendel's laws are useful only in the simplest and most general cases; there exist numerous genetic processes and phenomena, both normal and abnormal, which violate them, such as incomplete dominance, codominance, genetic linkage, epistatic interactions and polygenic traits, non-random segregation of chromosomes, extranuclear inheritance, gene conversion, and many epigenetic phenomena.
noncoding strand
See template strand.
nondisjunction
The failure of homologous chromosomes or sister chromatids to separate properly during cell division. Nondisjunction results in daughter cells that are aneuploid, containing abnormal numbers of one or more specific chromosomes. It may be caused by any of a variety of factors.
nonhomologous recombination
nonsense mutation

Also called a point-nonsense mutation.

A type of point mutation which results in a premature stop codon in the transcribed mRNA sequence, thereby causing the premature termination of translation, which results in a truncated, incomplete, and often non-functional protein.
nonsynonymous mutation

Also called a nonsynonymous substitution or replacement mutation.

A type of mutation in which the substitution of one nucleotide base for another results, after transcription and translation, in an amino acid sequence that is different from that produced by the original unmutated gene. Because nonsynonymous mutations always result in a biological change in the organism, they are often subject to strong selection pressure. Contrast synonymous mutation.
Northern blotting
nuclear membrane

Also called the nuclear envelope.

A sub-cellular barrier consisting of two lipid bilayer membranes that surrounds the nucleus in eukaryotic cells.
nucleic acid
A long, polymeric macromolecule made up of smaller monomers called nucleotides which are chemically linked to one another in a chain. Two specific types of nucleic acid, DNA and RNA, are used in biological systems to encode the genetic information governing the construction, development, and ordinary processes of all living organisms. The order, or sequence, of the nucleotides in DNA and RNA molecules contains information that is translated into proteins, which direct all of the chemical reactions necessary for life.
nucleic acid sequence
The precise order of consecutively linked nucleotides in a nucleic acid molecule, such as DNA or RNA. Long sequences of nucleotides are the principal means by which biological systems store genetic information, and therefore the accurate replication, transcription, and translation of such sequences is of the utmost importance, lest the information be lost or corrupted. Nucleic acid sequences may be equivalently referred to as sequences of nitrogenous bases, nucleobases, nucleotides, or base pairs, and they correspond directly to sequences of codons and amino acids.
nucleobase

Sometimes used interchangeably with nitrogenous base or simply base.

One of the five primary or canonical nitrogenous basesadenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U) – that form nucleosides and nucleotides, the latter of which are the fundamental building blocks of nucleic acids. The ability of these nucleobases to form base pairs via hydrogen bonding, as well as their flat, compact three-dimensional profiles, allows them to "stack" one upon another and leads directly to the long-chain structures of DNA and RNA.
nucleolus
An organelle within the nucleus of eukaryotic cells which is composed of proteins, DNA, and RNA and serves as the site of ribosome synthesis.
nucleoside
An organic molecule composed exclusively of a nitrogenous base bound to a five-carbon sugar (either ribose or deoxyribose), as opposed to a nucleotide, which additionally includes one or more phosphate groups.
nucleosome
nucleotide
An organic molecule that serves as the monomer or subunit of nucleic acid polymers, including RNA and DNA. Each nucleotide is composed of three constituent parts: a nitrogenous base, a five-carbon sugar (either ribose or deoxyribose), and at least one phosphate group. Though technically distinct, the term "nucleotide" is often used interchangeably with nitrogenous base, nucleobase, and base pair when referring to the sequences that make up nucleic acids. Contrast nucleoside.
nucleus

Plural nuclei.

A membrane-enclosed organelle found in eukaryotic cells which contains most of the cell's genetic material (organized as chromosomes) and directs the activities of the cell by regulating gene expression.
null allele
Any allele made non-functional by way of a genetic mutation. The mutation may result in the complete failure to produce a gene product or a gene product that does not function properly; in either case, the allele may be considered non-functional.
nullizygous

O[]

Okazaki fragments
oligonucleotide

Also abbreviated oligo.

A short chain of nucleic acid residues. Oligonucleotides are often used to detect the presence of larger mRNA molecules or assembled into two-dimensional microarrays for high-throughput sequence analysis.
oncogene
A gene that has the potential to cause cancer. In tumor cells, such genes are often mutated and/or expressed at abnormally high levels.
open reading frame (ORF)
The part of a reading frame that has the ability to be translated from DNA or RNA into protein; any continuous stretch of codons that contains a start codon and a stop codon.
operon
A functional DNA sequence consisting of a cluster of structural genes which are collectively under the control of a single promoter. The set of genes is transcribed together into a single polycistronic RNA molecule, which may then be translated together or undergo splicing to create multiple RNAs which are translated independently; the result is that the genes contained in the operon are either expressed together or not at all.
origin of replication (ORI)
ortholog
One of a set of genes (or, more generally, any DNA sequences showing homology) which are present in different genomes but are directly related to one another by vertical descent from a single gene or sequence in the last common ancestor of those genomes; such genes or sequences are said to be orthologous. Orthologs are descended from the same ancestral sequence and can be inferred to be related to each other based on the similarity of their sequences; though they may have evolved independently within the separate genomes by mutation and natural selection, their products may still retain similar structures, functions, or levels of expression across species and populations. The identification of orthologs has proven important in inferring phylogenetic relationships between different organisms. Contrast paralog.
outbreeding

Also called outcrossing and crossbreeding.

Sexual reproduction between different breeds or individuals, which has the potential to increase genetic diversity by introducing unrelated genetic material into a breeding population. Contrast inbreeding.
overexpression
An abnormally high level of gene expression which results in an excessive number of copies of one or more gene products. Overexpression produces a pronounced gene-related phenotype.[16][17]

P[]

p53
palindromic sequence
A nucleic acid sequence of a double-stranded DNA or RNA molecule in which the unidirectional sequence (e.g. 5' to 3') of nucleotides on one strand matches the sequence in the same direction (e.g. 5' to 3') on the complementary strand. In other words, a nucleotide sequence is said to be palindromic if it is equal to its reverse complement. Palindromic motifs are common in most genomes and are capable of forming hairpins.
paralog
One of a set of genes (or, more generally, any DNA sequences showing homology) which are directly related to each other via one or more genetic duplication events; such genes or sequences are said to be paralogous. Paralogs result from the duplication of a single sequence within a single genome and then the subsequent divergence of the duplicated sequences by mutation and natural selection (either within the original genome, or, during speciation, in different genomes). Contrast ortholog.
particulate inheritance
patroclinous
pedigree chart
penetrance
The proportion of individuals with a given genotype who express the associated phenotype, usually given as a percentage. Because of the many complex interactions that govern gene expression, the same allele may produce an observable phenotype in one individual but not in another. If less than 100% of the individuals in a population carrying the genotype of interest also express the associated phenotype, both the genotype and phenotype may be said to show incomplete penetrance. Penetrance quantifies the probability that an allele will result in the expression of its associated phenotype in any form, i.e. to any extent that makes an individual carrier different from individuals without the allele. Compare expressivity.
peptide
A short chain of amino acid monomers linked by covalent peptide bonds. Peptides are the fundamental building blocks of longer polypeptide chains and hence of proteins.
pericentric
(of a gene or region of a chromosome) Positioned near to the centromere of the chromosome.
pharmacogenomics
phenomic lag
A delay in the phenotypic expression of a genetic mutation owing to the time required for the manifestation of changes in the affected biochemical pathways.[6]
phenotype
The composite of the observable morphological, physiological, and behavioral traits of an organism that result from the expression of the organism's genotype as well as the influence of environmental factors and the interactions between the two.
phosphate backbone
phosphodiester bond
The pair of ester bonds linking a phosphate with the two pentose rings of consecutive nucleotides on the same strand of a nucleic acid. Each phosphate molecule forms a covalent bond with the 3' carbon of one pentose and the 5' carbon of the adjacent pentose; the repeated series of such bonds that holds together the long chain of nucleotides in DNA and RNA is known as the phosphate or phosphodiester backbone.
phylogenetics
The study of the evolutionary history of and relationships between individuals or groups of organisms, such as species or populations, through methods that evaluate observed heritable traits, including morphological features and DNA sequences. The result of such analyses is known as a phylogeny or phylogenetic tree.
plasmid
Any small DNA molecule that is physically separated from the larger body of chromosomal DNA and can replicate independently. Plasmids are most commonly found as small, circular, double-stranded DNA molecules in prokaryotes such as bacteria, though they are also sometimes present in archaea and eukaryotes.
pleiotropy
The phenomenon by which one gene influences two or more seemingly unrelated phenotypic traits, by any of several distinct but potentially overlapping mechanisms.
ploidy
The number of complete sets of chromosomes in a cell, and hence the number of possible alleles present within the cell at any given autosomal locus.
point mutation

Also called a substitution.

A mutation by which a single nucleotide base is changed, inserted, or deleted from a sequence of DNA or RNA.
poly(A) tail
polyadenylation
polygene
polygenic trait
Any phenotypic trait which is under the direct control of more than one gene. Polygenic traits are often quantitative traits.
polylinker
See multiple cloning site.
polymerase chain reaction (PCR)
polymorphism
polypeptide
A long, continuous, and unbranched polymeric chain of amino acid monomers linked by covalent peptide bonds, typically longer than a peptide. Proteins generally consist of one or more polypeptides arranged in a biologically functional way.
polyploid
(of a cell or organism) Having more than two homologous copies of each chromosome. Polyploidy may occur as a normal condition of chromosomes in certain cells or even entire organisms, or it may occur as the result of abnormal cell division or a mutation causing the duplication of the entire chromosome set. Contrast haploid and diploid.
polysome

Also called a polyribosome or ergosome.

A complex of a messenger RNA molecule and two or more ribosomes which act to translate the mRNA transcript into a polypeptide.
population genetics
A subfield of genetics and evolutionary biology that studies genetic differences within and between populations of organisms.
positional cloning
post-transcriptional modification
post-translational modification
primary transcript
The unprocessed, single-stranded RNA molecule produced by the transcription of a DNA sequence as it exists before post-transcriptional modifications such as alternative splicing convert it into a mature RNA product such as an mRNA, tRNA, or rRNA. A precursor mRNA or pre-mRNA, for example, is a type of primary transcript that becomes a mature mRNA ready for translation after processing.
primer
proband

Also prosposito for a male subject and prosposita for a female subject.

A term used in medical genetics and genealogy to denote a particular subject being studied or reported on.
probe
A reagent used to make a single measurement in a gene expression experiment. Compare reporter.
probe-set
A collection of two or more probes designed to measure a single molecular species, such as a collection of oligonucleotides designed to hybridize to various parts of the mRNA transcripts generated from a single gene.
prometaphase
promoter
A region of DNA that initiates the transcription of a particular gene.
prophase
The first stage of cell division in both mitosis and meiosis, occurring after interphase and before prometaphase, during which the DNA of the chromosomes is condensed into chromatin, the nucleolus breaks down, and the mitotic spindle forms.
protein
A linear polymeric macromolecule composed of a series of amino acids linked by peptide bonds. Proteins carry out the majority of the chemical reactions that occur inside living cells.
proteome
The entire set of proteins that is or can be expressed by a particular genome, cell, tissue, or species at a particular time (such as during a single lifespan or during a specific developmental stage) or under particular conditions (such as when compromised by a certain disease).
pseudogene
A non-functional sequence of DNA that resembles a functional gene. Pseudogenes are typically superfluous copies of functional genes which have been duplicated by natural processes, except that they lack regulatory sequences necessary for proper transcription or translation or contain other defects such as frameshift mutations, premature stop codons, or missing introns.
Punnett square
purebred

Also called a purebreed.

purine
A double-ringed heterocyclic organic compound which, along with pyrimidine, is one of two molecules from which all nitrogenous bases (including those used in DNA and RNA) are derived. Adenine (A) and guanine (G) are classified as purines.
putative gene
A specific nucleotide sequence suspected to be a functional gene based on the identification of its open reading frame. The gene is said to be "putative" in the sense that no function has yet been described for its products.
pyrimidine
A single-ringed heterocyclic organic compound which, along with purine, is one of two molecules from which all nitrogenous bases (including those used in DNA and RNA) are derived. Cytosine (C), thymine (T), and uracil (U) are classified as pyrimidines.
pyrimidine dimer

Q[]

quantitative genetics
A branch of population genetics which studies phenotypes that vary continuously (such as height or mass) as opposed to those that fall into discretely identifiable categories (such as eye color or the presence or absence of a particular trait). Quantitative genetics employs statistical methods and concepts to link continuously distributed phenotypic values to specific genotypes and gene products.
quantitative PCR (qPCR)

Also called real-time PCR (rtPCR).

quantitative trait

Also called a complex trait.

quantitative trait locus (QTL)

R[]

reading frame
A way of dividing the nucleotide sequence in a DNA or RNA molecule into a set of consecutive, non-overlapping triplets, which is "read" by proteins during transcription and replication. In coding DNA, each triplet is referred to as a codon that corresponds to a particular amino acid during translation. In general, only one reading frame (the so-called open reading frame) in a given section of a nucleic acid can be used to make functional proteins, but there are exceptions in a few organisms. A frameshift mutation results in a shift in the normal reading frame and affects all downstream codons.
recessiveness
A relationship between the alleles of a gene in which one allele produces an effect on phenotype that is overpowered or "masked" by the contribution of another allele at the same locus; the first allele and its associated phenotypic trait are said to be recessive, and the second allele and its associated trait are said to be dominant. Often, recessive alleles code for inefficient or dysfunctional proteins. Like dominance, recessiveness is not an inherent property of any allele or phenotype, but simply describes its relationship to one or more other alleles or phenotypes. In genetics shorthand, recessive alleles are often represented by a lowercase letter (e.g. "a", in contrast to the dominant "A").
A reciprocal translocation between chromosome 4 and chromosome 20
reciprocal translocation
A type of chromosomal translocation by which there is a reciprocal exchange of chromosomal segments between two or more non-homologous chromosomes. When the exchange of material is evenly balanced, reciprocal translocations are usually harmless.
recombinant DNA (rDNA)
Any DNA molecule in which laboratory methods of genetic recombination have brought together genetic material from multiple sources, thereby creating a sequence that would not otherwise be found in a naturally occurring genome. Because DNA molecules from all organisms share the same basic chemical structure and properties, DNA sequences from any species, or even sequences created de novo by artificial gene synthesis, may be incorporated into recombinant DNA molecules. Recombinant DNA technology is widely used in genetic engineering.
replication
1.  The process by which certain biological molecules, notably the nucleic acids DNA and RNA, produce copies of themselves.
2.  A technique used to estimate technical and biological variation in experiments for statistical analysis of microarray data. Replicates may be technical replicates, such as dye swaps or repeated array hybridizations, or biological replicates, biological samples from separate experiments that test the effects of the same experimental treatments.
replicon
Any molecule or region of DNA or RNA that replicates from a single origin of replication.
reporter
A MIAME-compliant term to describe a reagent used to make a single measurement in a gene expression experiment. MIAME defines it as "the nucleotide sequence present in a particular location on the array".[13] A reporter may be a segment of single-stranded DNA that is covalently attached to the array surface. Compare probe.
repressor
A DNA-binding protein that decreases the expression of one or more genes by binding to the operator and blocking the attachment of RNA polymerase to the promoter, thus preventing transcription.
residue
response element
A short sequence of DNA within a promoter region that is able to bind specific transcription factors in order to regulate transcription of specific genes.
restriction enzyme

Also called a restriction endonuclease, restriction exonuclease, or restrictase.

An endonuclease or exonuclease enzyme that recognizes and cleaves a nucleic acid molecule into fragments at or near specific recognition sequences known as restriction sites by breaking the phosphodiester bonds of the nucleic acid backbone. Restriction enzymes are naturally occurring in many organisms, but are also routinely used for artificial modification of DNA in laboratory techniques such as molecular cloning.
restriction fragment
Any DNA fragment that results from the cutting of a DNA strand by a restriction enzyme at one or more restriction sites.
restriction fragment length polymorphism (RFLP)
restriction site

Also called a restriction recognition site.

A short, specific sequence of nucleotides (typically 4 to 8 bases in length) that is reliably recognized by a specific restriction enzyme. Because restriction enzymes usually bind as homodimers, restriction sites are generally palindromic sequences spanning both strands of a double-stranded DNA molecule. Restriction endonucleases cleave the phosphate backbone between two nucleotides within the recognized sequence itself, but other types of enzymes cut at one end of the sequence or at a nearby sequence.
reverse genetics
reverse transcriptase
ribonuclease
ribonucleic acid (RNA)
A polymeric nucleic acid molecule composed of a series of ribonucleotides which incorporate a set of four nucleobases: adenine (A), guanine (G), cytosine (C), and uracil (U). Unlike DNA, RNA is more often found as a single strand folded onto itself, rather than a paired double strand. Various types of RNA molecules serve in a wide variety of essential biological roles, including coding, decoding, regulating, and expressing genes, as well as functioning as signaling molecules and, in certain viral genomes, as the primary genetic material itself.
ribose
ribosomal RNA (rRNA)
ribosome
A molecular complex which serves as the site of protein synthesis. Ribosomes consist of two subunits (the small subunit, which reads the messages encoded in mRNA molecules, and the large subunit, which links amino acids in sequence to form a polypeptide chain), each of which is composed of one or more strands of ribosomal RNA and various ribosomal proteins.
RNA interference (RNAi)
RNA polymerase

Often abbreviated RNAP or RNApol.

Any of a class of enzymes that synthesizes RNA molecules from a DNA template. RNA polymerases are essential for transcription and are found in all living organisms and many viruses. They build long single-stranded polymers called transcripts by adding ribonucleotides one at a time in the 5'-to-3' direction, relying on the template provided by the complementary strand to transcribe the nucleotide sequence faithfully.
RNA splicing
Robertsonian translocation (ROB)
A type of chromosomal translocation by which double-strand breaks at or near the centromeres of two acrocentric chromosomes cause a reciprocal exchange of segments that gives rise to one large metacentric chromosome (composed of the long arms) and one extremely small chromosome (composed of the short arms), the latter of which is often subsequently lost from the cell with little effect because it contains very few genes. The resulting karyotype shows one fewer than the expected total number of chromosomes, because two previously distinct chromosomes have essentially fused together. Carriers of Robertsonian translocations are generally not associated with any phenotypic abnormalities, but do have an increased risk of generating meiotically unbalanced gametes.

S[]

Sanger sequencing
A method of DNA sequencing based on the in vitro replication of a particular DNA template sequence; the random incorporation of fluorochrome-labeled, chain-terminating dideoxynucleotides in the elongating strands; the subsequent gravimetric sorting of these variably sized fragments in a miniature electrophoresis gel; and finally the detection by laser chromatography of the specific fluorochrome terminating each of the size-sorted fragments, thus revealing, as one reads from small-sized fragments to large-sized fragments, the sequence of the complementary strand in the order of the fluorochrome labels. Though Sanger sequencing has been superseded in some contexts by next-generation methods, it remains widely used for its ability to produce sequence reads of greater than 500 nucleotides and its very low error rate.
An outline of the Sanger sequencing method
scaffolding
selective sweep
The process by which strong positive selection of a new and beneficial mutation within a population causes the mutation to reach fixation so quickly that nearby linked DNA sequences also become fixed via genetic hitchhiking, thereby reducing or eliminating the genetic variation of nearby loci within the population.
sense
A distinction made between the individual strands of a double-stranded DNA molecule in order to easily and specifically identify each strand. The two complementary strands are distinguished as sense and antisense or, equivalently, the coding strand and the template strand. It is the antisense/template strand which is actually used as the template for transcription; the sense/coding strand merely resembles the sequence of codons on the RNA transcript, which makes it possible to determine from the DNA sequence alone the expected amino acid sequence of any protein translated from the RNA transcript. Which strand is which is relative only to a particular RNA transcript and not to the entire DNA molecule; that is, either strand can function as the sense/coding or antisense/template strand.
sequence motif
Any recurring sequence of nucleotides or amino acids that is or is conjectured to be biologically significant. In nucleic acids, sequence motifs are often short (three to ten nucleotides in length), highly conserved sequences that are used as recognition sites for DNA-binding enzymes or RNAs involved in the regulation of gene expression.
sequence-tagged site (STS)
sex chromosome
See allosome.
sex linkage
short arm

Denoted in shorthand with the symbol p.

In condensed chromosomes where the positioning of the centromere creates two segments or "arms" of unequal length, the shorter of the two arms of a chromatid. Contrast long arm.
short tandem repeat (STR)
See microsatellite.
shotgun sequencing
silencer
A region of DNA that can be bound by a repressor.
silent mutation
A type of neutral mutation which does not have an observable effect on the organism's phenotype. Though the term "silent mutation" is often used interchangeably with synonymous mutation, synonymous mutations are not always silent, nor vice versa. Missense mutations which result in a different amino acid but one with similar functionality (e.g. leucine instead of isoleucine) are also often classified as silent, since such mutations usually do not significantly affect protein function.
single-nucleotide polymorphism (SNP)
Any substitution of a single nucleotide which occurs at a specific position within a genome and with measurable frequency within a population; for example, at a specific base position in a DNA sequence, the majority of the individuals in a population may have a cytosine (C), while in a minority of individuals, the same position may be occupied by an adenine (A). SNPs are usually defined with respect to a "standard" reference genome; an individual human genome differs from the reference human genome at an average of 4 to 5 million positions, most of which consist of SNPs and short indels.
single-strand break
The loss of continuity of the phosphate-sugar backbone in one strand of a DNA duplex.[6] Contrast double-strand break.
single-stranded DNA (ssDNA)
Any DNA molecule that consists of a single nucleotide polymer, or "strand", as opposed to a pair of complementary strands held together by hydrogen bonds (double-stranded DNA). In most circumstances, DNA is more stable and more common in double-stranded form, but high temperatures, low concentrations of dissolved salts, and very high or low pH can cause double-stranded molecules to decompose into two single-stranded molecules in a process known as "melting"; this reaction is exploited by naturally occurring enzymes such as those involved in DNA replication as well as by laboratory techniques such as polymerase chain reaction.
sister chromatids
A pair of identical copies (chromatids) produced as the result of the DNA replication of a chromosome, particularly when both copies are joined together by a common centromere; the pair of sister chromatids is called a dyad. The two sister chromatids are ultimately separated from each other into two different cells during mitosis or meiosis.
small interfering RNA (siRNA)
solenoid fiber
somatic cell

Also called a vegetal cell or soma.

Any biological cell forming the body of an organism, or, in multicellular organisms, any cell other than a gamete, germ cell, or undifferentiated stem cell. Somatic cells are theoretically distinct from cells of the germ line, meaning the mutations they have undergone can never be transmitted to the organism's descendants, though in practice exceptions do exist.
somatic cell nuclear transfer (SCNT)
Southern blot
A molecular biology method used for detecting a specific sequence in DNA samples. The technique combines separation of DNA fragments by gel electrophoresis, transfer of the DNA to a synthetic membrane, and subsequent identification of target fragments with radio-labeled or fluorescent hybridization probes.
spatially-restricted gene expression
The expression of one or more genes only within a specific anatomical region or tissue, often in response to a paracrine signal. The boundary between the jurisdictions of two spatially restricted genes may generate a sharp phenotypic gradient there, as with striping patterns.
spectral karyotype (SKY)
spliceosome
splicing
See genetic engineering.
split-gene
standard genetic code
The genetic code used by the vast majority of living organisms for translating nucleic acid sequences into proteins. In this system, of the 64 possible permutations of three-letter codons that can be made from the four nucleotides, 61 code for one of the 20 amino acids, and the remaining three code for stop signals. For example, the codon CAG codes for the amino acid glutamine and the codon TAA is a stop codon. The standard genetic code is described as degenerate or redundant because a single amino acid may be coded for by more than one codon.
start codon
The first codon translated by a ribosome from a mature messenger RNA transcript, used as a signal to initiate protein synthesis. In the standard genetic code, the start codon always codes for the same amino acid, methionine, in eukaryotes and for a modified methionine in prokaryotes. The most common start codon is the triplet AUG. Contrast stop codon.
statistical genetics
A branch of genetics concerned with the development of statistical methods for drawing inferences from genetic data. The theories and methodologies of statistical genetics often support research in quantitative genetics, genetic epidemiology, and bioinformatics.
stem-loop

Also called a hairpin or hairpin loop.

stem cell
Any biological cell which has not yet differentiated into a specialized cell type and which can divide through mitosis to produce more stem cells.
sticky end
stop codon

Also called a termination codon.

A codon that signals the termination of protein synthesis during translation of a messenger RNA transcript. In the standard genetic code, three different stop codons are used to dissociate ribosomes from the growing amino acid chain, thereby ending translation: UAG (nicknamed "amber"), UAA ("ochre"), and UGA ("opal"). Contrast start codon.
stringency
The effect of conditions such as temperature and pH upon the degree of complementarity that is required for a hybridization reaction to occur between two single-stranded nucleic acid molecules. In the most stringent conditions, only exact complements can successfully hybridize; as stringency decreases, an increasing number of mismatches can be tolerated by the two hybridizing strands.[3]
structural gene
A gene that codes for any protein or RNA product other than a regulatory factor. Structural gene products include enzymes, structural proteins, and certain non-coding RNAs.
submetacentric
(of a linear chromosome or chromosome fragment) Having a centromere positioned close to but not exactly in the middle of the chromosome, resulting in chromatid arms of slightly different lengths.[2] Compare metacentric.
substitution
A type of point mutation in which a single nucleotide base is changed or substituted for another.
swivel point
synonymous mutation

Also called a synonymous substitution.

A type of mutation in which the substitution of one nucleotide base for another results, after transcription and translation, in an amino acid sequence which is identical to the original unmutated sequence. This is possible because of the degeneracy of the genetic code, which allows different codons to code for the same amino acid. Though synonymous mutations are often considered silent, this is not always the case; a synonymous mutation may affect the efficiency or accuracy of transcription, splicing, translation, or any other process by which genes are expressed, rendering the mutation non-silent. Contrast nonsynonymous mutation.

T[]

tandem repeat
A pattern within a nucleic acid sequence in which one or more nucleobases are repeated and the repetitions are directly adjacent (i.e. tandem) to each other. An example is ATGACATGACATGAC, in which the sequence ATGAC is repeated three times.
TATA box

Also called the Goldberg-Hogness box.

A highly conserved non-coding DNA sequence containing a consensus of repeating T and A base pairs that is commonly found in promoter regions of genes in archaea and eukaryotes. The TATA box often serves as the site of initiation of transcription or as a binding site for transcription factors.
telocentric
(of a linear chromosome or chromosome fragment) Having a centromere positioned at the terminal end of the chromosome (near or within the telomere), resulting in only a single arm.[2] Compare acrocentric.
telomere
A region of repetitive nucleotide sequences at each end of a linear chromosome which protects the end of the chromosome from deterioration and from fusion with other chromosomes. Since each round of replication results in the shortening of the chromosome, telomeres act as disposable buffers which are sacrificed to perpetualb truncation instead of nearby genes; telomeres can also be lengthened by the enzyme telomerase.
telophase
The final stage of cell division in both mitosis and meiosis, occurring after anaphase and before or simultaneously with cytokinesis, during which a nuclear membrane is synthesized around each set of chromatids, nucleoli are reassembled, and the mitotic spindle is disassembled. Following cytokinesis, the new daughter cells resume interphase.
template strand

Also antisense strand, negative (-) sense strand, and noncoding strand.

The strand of a double-stranded DNA molecule which is used as a template for RNA synthesis during transcription. The sequence of the template strand is complementary to the resulting RNA transcript. Contrast coding strand; see also sense.
thymine

Abbreviated in shorthand with the letter T.

One of the four nucleobases present in DNA molecules. Thymine forms a base pair with adenine. In RNA, thymine is not used at all, and is instead replaced with uracil.
tissue-specific gene expression
Gene function and expression which is restricted to a particular tissue or cell type. Tissue-specific expression is usually the result of an enhancer which is activated only in the proper cell type.
trait
trans
transcription
The first step in the process of gene expression, in which a messenger RNA molecule complementary to a particular gene encoded in DNA is synthesized by enzymes called RNA polymerases. Transcription must be followed by translation before a functional protein can be produced.
transcription factor (TF)
Any protein that controls the rate of transcription of genetic information from DNA to messenger RNA by binding to a specific DNA sequence and promoting or blocking the recruitment of RNA polymerase to nearby genes. Transcription factors can effectively turn "on" and "off" specific genes in order to make sure they are expressed at the right times and in the right places; for this reason, they are a fundamental and ubiquitous mechanism of gene regulation.
transcriptional bursting
The intermittent nature of transcription and translation mechanisms. Both processes occur in "bursts" or "pulses", with periods of gene activity separated by irregular intervals.
transcript of unknown function (TUF)
transcriptome
The entire set of RNA molecules (often referring to all types of RNA but sometimes exclusively to messenger RNA) that is or can be expressed by a particular genome, cell, population of cells, or species at a particular time or under particular conditions. The transcriptome is distinct from the exome and the translatome.
transduction
transfer RNA (tRNA)

Formerly referred to as soluble RNA (sRNA).

A special class of RNA molecule, typically 76 to 90 nucleotides in length, that serves as a physical adapter allowing mRNA transcripts to be translated into sequences of amino acids during protein synthesis. Each tRNA contains a specific anticodon triplet corresponding to an amino acid that is covalently attached to the tRNA's opposite end; as translation proceeds, tRNAs are recruited to the ribosome, where each mRNA codon is paired with a tRNA containing the complementary anticodon. Depending on the organism, cells may employ as many as 41 distinct tRNAs with unique anticodons; because of codon degeneracy within the genetic code, several tRNAs containing different anticodons carry the same amino acid.
transformation
transgene
Any gene or other segment of genetic material that has been isolated from one organism and then transferred either naturally or by any of a variety of genetic engineering techniques into another organism, especially one of a different species. Transgenes are usually introduced into the second organism's germ line. They are commonly used to study gene function or to confer an advantage not otherwise available in the unaltered organism.
transition
A point mutation in which a purine nucleotide is substituted for another purine (AG) or a pyrimidine nucleotide is substituted for another pyrimidine (CT). Contrast transversion.
translation
The second step in the process of gene expression, in which the messenger RNA transcript produced during transcription is read by a ribosome to produce a functional protein.
translatome
The entire set of messenger RNA molecules that are translated by a particular genome, cell, tissue, or species at a particular time or under particular conditions. Like the transcriptome, it is often used as a proxy for quantifying levels of gene expression, though the transcriptome also includes many RNA molecules that are never translated.
translocation
A type of chromosomal abnormality caused by the structural rearrangement of large sections of one or more chromosomes. There are two main types: reciprocal and Robertsonian.
transposable element (TE)

Also called a transposon.

transversion
A point mutation in which a purine nucleotide is substituted for a pyrimidine nucleotide, or vice versa (e.g. AC or AT). Contrast transition.
true-breeding
Showing consistent, predictable, and replicable traits in the progeny that result from the mating of any two purebred parents belonging to the same breed or variety (and not the traits of other breeds or varieties that may previously have been crossed into the lineage). To "breed true" means that parents of the same lineage will produce offspring that share all of the parents' traits.

U[]

unequal crossing-over
upregulation

Also called promotion.

Any process, natural or artificial, which increases the level of gene expression of a certain gene. A gene which is observed to be expressed at relatively high levels (such as by detecting higher levels of its mRNA transcripts) in one sample compared to another sample is said to be upregulated. Contrast downregulation.
upstream
Towards or closer to the 5'-end of a chain of nucleotides, or the N-terminus of a peptide chain. Contrast downstream.
upstream activating sequence (UAS)
uracil

Abbreviated in shorthand with the letter U.

One of the four nucleobases present in RNA molecules. Uracil forms a base pair with adenine. In DNA, uracil is not used at all, and is instead replaced with thymine.

V[]

vector
Any DNA molecule used as a vehicle to artificially transport foreign genetic material into another cell, where it can be replicated and/or expressed. Vectors are typically engineered recombinant DNA sequences consisting of an insert (often a transgene) and a longer "backbone" sequence containing an origin of replication, a multiple cloning site, and a selectable marker. Vectors are widely used in molecular biology laboratories to isolate, clone, or express the insert in the target cell.

W[]

Western blotting
wild type (WT)

Denoted in shorthand by a + superscript.

A term referring to the phenotype of the typical form of a species as it occurs in nature, a product of the standard "normal" allele at a given locus as opposed to that produced by a non-standard mutant allele.
wobble base pairing

X[]

X chromosome
One of two sex chromosomes present in organisms which use the XY sex-determination system (and the only sex chromosome in the X0 system). The X chromosome is found in both males and females and typically contains much more gene content than its counterpart, the Y chromosome.
X-inactivation
X-linked trait

Y[]

Y chromosome
One of two sex chromosomes present in organisms which use the XY sex-determination system. The Y chromosome is found only in males and is typically much smaller than its counterpart, the X chromosome.
yeast artificial chromosome (YAC)

Z[]

Z-DNA
zygosity
zygote
A type of eukaryotic cell formed as the direct result of a fertilization event between two gametes. In multicellular organisms, the zygote is the earliest developmental stage.

See also[]

References[]

  1. ^ "Talking Glossary of Genetic Terms". genome.gov. 8 October 2017. Retrieved 8 October 2017.
  2. ^ a b c d e f g h Klug, William S.; Cummings, Michael R. (1986). Concepts of Genetics (2nd ed.). Glenview, Ill.: Scott, Foresman and Company. ISBN 0-673-18680-6.
  3. ^ a b c Lewin, Benjamin (2003). Genes VIII. Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 0-13-143981-2.
  4. ^ Nishikawa, S. (2007). "Reprogramming by the numbers". Nature Biotechnology. 25 (8): 877–878. doi:10.1038/nbt0807-877. PMID 17687365. S2CID 39773318.
  5. ^ Priness, I.; Maimon, O.; Ben-Gal, I. (2007). "Evaluation of gene-expression clustering via mutual information distance measure". BMC Bioinformatics. 8: 111. doi:10.1186/1471-2105-8-111. PMC 1858704. PMID 17397530.
  6. ^ a b c d e f g h i Rieger, Rigomar (1991). Glossary of Genetics: Classical and Molecular (5th ed.). Berlin: Springer-Verlag. ISBN 3540520546.
  7. ^ "Functional Genomics Data Society – FGED Society".
  8. ^ Edgar, R; Domrachev, M; Lash, AE (1 January 2002). "Gene Expression Omnibus: NCBI gene expression and hybridization array data repository". Nucleic Acids Research. 30 (1): 207–10. doi:10.1093/nar/30.1.207. PMC 99122. PMID 11752295.
  9. ^ Barrett, T; Wilhite, SE; Ledoux, P; Evangelista, C; Kim, IF; Tomashevsky, M; Marshall, KA; Phillippy, KH; Sherman, PM; Holko, M; Yefanov, A; Lee, H; Zhang, N; Robertson, CL; Serova, N; Davis, S; Soboleva, A (January 2013). "NCBI GEO: archive for functional genomics data sets--update". Nucleic Acids Research. 41 (Database issue): D991-5. doi:10.1093/nar/gks1193. PMC 3531084. PMID 23193258.
  10. ^ Resta R, Biesecker BB, Bennett RL, Blum S, Hahn SE, Strecker MN, Williams JL (April 2006). "A new definition of Genetic Counseling: National Society of Genetic Counselors' Task Force report". Journal of Genetic Counseling. 15 (2): 77–83. doi:10.1007/s10897-005-9014-3. PMID 16761103.
  11. ^ Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006). "Base-stacking and base-pairing contributions into thermal stability of the DNA double helix". Nucleic Acids Res. 34 (2): 564–74. doi:10.1093/nar/gkj454. PMC 1360284. PMID 16449200.
  12. ^ Rayner TF; Rocca-Serra P; Spellman PT; Causton HC; et al. (2006). "A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB". BMC Bioinformatics. 7: 489. doi:10.1186/1471-2105-7-489. PMC 1687205. PMID 17087822.
  13. ^ a b Oliver S (2003). "On the MIAME Standards and Central Repositories of Microarray Data". Comparative and Functional Genomics. 4 (1): 1. doi:10.1002/cfg.238. PMC 2447402. PMID 18629115.
  14. ^ Brazma A (2009). "Minimum Information About a Microarray Experiment (MIAME)--successes, failures, challenges". ScientificWorldJournal. 9: 420–3. doi:10.1100/tsw.2009.57. PMC 5823224. PMID 19484163.
  15. ^ Functional Genomics Data Society (June 2012). "Minimum Information about a high-throughput SEQuencing Experiment".
  16. ^ "overexpression". Oxford Living Dictionary. Oxford University Press. 2017. Retrieved 18 May 2017. The production of abnormally large amounts of a substance which is coded for by a particular gene or group of genes; the appearance in the phenotype to an abnormally high degree of a character or effect attributed to a particular gene.
  17. ^ "overexpress". NCI Dictionary of Cancer Terms. National Cancer Institute at the National Institutes of Health. 2011-02-02. Retrieved 18 May 2017. overexpress
    In biology, to make too many copies of a protein or other substance. Overexpression of certain proteins or other substances may play a role in cancer development.

Further reading[]

  • Budd, A. (2012). "Introduction to genome biology: features, processes, and structures". Evolutionary Genomics. Methods in Molecular Biology. Vol. 855. pp. 3–4. doi:10.1007/978-1-61779-582-4_1. ISBN 978-1-61779-581-7. PMID 22407704.

External links[]


Retrieved from ""