HLA-G histocompatibility antigen, class I, G, also known as human leukocyte antigen G (HLA-G), is a protein that in humans is encoded by the HLA-Ggene.[5]
HLA-G belongs to the HLA nonclassical class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain and a light chain (beta-2 microglobulin). The heavy chain is anchored in the membrane. HLA-G is expressed on fetal derived placental cells. The heavy chain is approximately 45 kDa and its gene contains 8 exons. Exon one encodes the leader peptide, exons 2 and 3 encode the alpha1 and alpha2 domain, which both bind the peptide, exon 4 encodes the alpha3 domain, exon 5 encodes the transmembrane region, and exon 6 encodes the cytoplasmic tail.[5] Exon 7 and 8 are not translated due to a stop codon present in exon 6.[6]
HLA-G may play a role in immune tolerance in pregnancy, being expressed in the placenta by extravillous trophoblast cells (EVT), while the classical MHC class I genes (HLA-A and HLA-B) are not.[7] As HLA-G was first identified in placenta samples, many studies have evaluated its role in pregnancy disorders, such as preeclampsia and recurrent pregnancy loss.[8] Its downregulation is related to HLA-A and -B downregulation results in protection from cytotoxic T cell responses, but would in theory result in a missing self response by natural killer cells. HLA-G is a ligand for NK cell inhibitory receptor KIR2DL4, and therefore expression of this HLA by the trophoblast defends it against NK cell-mediated death.[9]
However, a large family with several members bearing only "null" HLA-G alleles has been found. None of these homozygous subjects have pregnancy or birth difficulties; nor do they present immunodeficiencies, autoimmune diseases, or tumors.[10][11] It is striking that this "null" allele (HLA-G*01:05N), while it is quite frequent in some populations, like in Iranians, it is almost absent in some Amerindian populations.[12] Also, some higher primates do not show all MHC-G isoforms.[13] In addition, Cercopithecinae middle-sized Old World monkeys do not bear full MHC-G molecules since all of these monkeys present stop codons at MHC-G DNA.[14] All of these anomalies must be studied.
The presence of soluble HLA-G (sHLA-G) in embryos is associated with better pregnancy rates. In order to optimize pregnancy rates, there is significant evidence that a morphological scoring system is the best strategy for the selection of embryos.[15] However, presence of soluble HLA-G might be considered as a second parameter if a choice has to be made between embryos of morphologically equal quality.[15]
Interactions[]
HLA-G has been shown to interact with CD8A.[16][17]
^Jay Iams; Creasy, Robert K.; Resnik, Robert; Robert Reznik (2004). Maternal-fetal medicine. Philadelphia: W.B. Saunders Co. pp. 31–32. ISBN978-0-7216-0004-8.
^Michita, Rafael Tomoya; Zambra, Francis Maria Báo; Fraga, Lucas Rosa; Sanseverino, Maria Teresa Vieira; Callegari-Jacques, Sidia Maria; Vianna, Priscila; Chies, José Artur Bogo (2016). "A tug-of-war between tolerance and rejection – New evidence for 3′UTR HLA-G haplotypes influence in recurrent pregnancy loss". Human Immunology. 77 (10): 892–897. doi:10.1016/j.humimm.2016.07.004. PMID27397898.
^Lash, G, Robson, S, Bulmer, J. (2010). "Review: Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua". Placenta. 31 (S): 87–92. doi:10.1016/j.placenta.2009.12.022. PMID20061017.CS1 maint: multiple names: authors list (link)
^Suárez MB, Morales P, Castro MJ, Fernández V, Varela P, Alvarez M, Martínez-Laso J, Arnaiz-Villena A (1997). "A new HLA-G allele (HLA-G*0105N) and its distribution in the Spanish population". Immunogenetics. 45 (6): 464–5. doi:10.1007/s002510050235. PMID9089111. S2CID22725476.
^Casro MJ, Morales P, Rojo-Amigo R, Martinez-Laso J, Allende L, Varela P, Garcia-Berciano M, Guillen-Perales J, Arnaiz-Villena A (September 2000). "Homozygous HLA-G*0105N healthy individuals indicate that membrane-anchored HLA-G1 molecule is not necessary for survival". Tissue Antigens. 56 (3): 232–9. doi:10.1034/j.1399-0039.2000.560305.x. PMID11034559.
^Arnaiz-Villena A, Enriquez-de-Salamanca M, Areces C, Alonso-Rubio J, Abd-El-Fatah-Khalil S, Fernandez-Honrado M, Rey D (April 2013). "HLA-G(∗)01:05N null allele in Mayans (Guatemala) and Uros (Titikaka Lake, Peru): Evolution and population genetics". Hum. Immunol. 74 (4): 478–82. doi:10.1016/j.humimm.2012.12.013. PMID23261410.
Carosella ED, Moreau P, LeMaoult J, Rouas-Freiss N (2008). "HLA-G: From biology to clinical benefits". Trends in Immunology. 29 (3): 125–32. doi:10.1016/j.it.2007.11.005. PMID18249584.
Arnaiz-Villena A, Martinez-Laso J, Alvarez M, et al. (1997). "Primate Mhc-E and -G alleles". Immunogenetics. 46 (4): 251–66. doi:10.1007/s002510050271. PMID9218527. S2CID2918451.
Le Bouteiller P (2000). "HLA-G in the human placenta: expression and potential functions". Biochem. Soc. Trans. 28 (2): 208–12. doi:10.1042/bst0280208. PMID10816129.
Moreau P, Rousseau P, Rouas-Freiss N, et al. (2002). "HLA-G protein processing and transport to the cell surface". Cell. Mol. Life Sci. 59 (9): 1460–6. doi:10.1007/s00018-002-8521-8. PMID12440768. S2CID9352496.
Greenway AL, Holloway G, McPhee DA, et al. (2004). "HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication". J. Biosci. 28 (3): 323–35. doi:10.1007/BF02970151. PMID12734410. S2CID33749514.
Wiendl H, Mitsdoerffer M, Weller M (2004). "Express and protect yourself: the potential role of HLA-G on muscle cells and in inflammatory myopathies". Hum. Immunol. 64 (11): 1050–6. doi:10.1016/j.humimm.2003.07.001. PMID14602235.
Urosevic M, Dummer R (2004). "HLA-G in skin cancer: a wolf in sheep's clothing?". Hum. Immunol. 64 (11): 1073–80. doi:10.1016/j.humimm.2003.08.351. PMID14602238.
Carosella ED, Moreau P, Le Maoult J, et al. (2004). HLA-G molecules: from maternal-fetal tolerance to tissue acceptance. Adv. Immunol. Advances in Immunology. 81. pp. 199–252. doi:10.1016/S0065-2776(03)81006-4. ISBN978-0-12-022481-4. PMID14711057.
Leavitt SA, SchOn A, Klein JC, et al. (2004). "Interactions of HIV-1 proteins gp120 and Nef with cellular partners define a novel allosteric paradigm". Curr. Protein Pept. Sci. 5 (1): 1–8. doi:10.2174/1389203043486955. PMID14965316.
Le Maoult J, Rouas-Freiss N, Le Discorde M, et al. (2004). "[HLA-G in organ transplantation]". Pathol. Biol. 52 (2): 97–103. doi:10.1016/j.patbio.2003.04.006. PMID15001239.
Tolstrup M, Ostergaard L, Laursen AL, et al. (2004). "HIV/SIV escape from immune surveillance: focus on Nef". Curr. HIV Res. 2 (2): 141–51. doi:10.2174/1570162043484924. PMID15078178.
Joseph AM, Kumar M, Mitra D (2005). "Nef: "necessary and enforcing factor" in HIV infection". Curr. HIV Res. 3 (1): 87–94. doi:10.2174/1570162052773013. PMID15638726.