Icosian calculus
The icosian calculus is a non-commutative algebraic structure discovered by the Irish mathematician William Rowan Hamilton in 1856.[1][2] In modern terms, he gave a group presentation of the icosahedral rotation group by generators and relations.
Hamilton's discovery derived from his attempts to find an algebra of "triplets" or 3-tuples that he believed would reflect the three Cartesian axes. The symbols of the icosian calculus can be equated to moves between vertices on a dodecahedron. Hamilton's work in this area resulted indirectly in the terms Hamiltonian circuit and Hamiltonian path in graph theory.[3] He also invented the icosian game as a means of illustrating and popularising his discovery.
Informal definition[]
The algebra is based on three symbols that are each roots of unity, in that repeated application of any of them yields the value 1 after a particular number of steps. They are:
Hamilton also gives one other relation between the symbols:
(In modern terms this is the (2,3,5) triangle group.)
The operation is associative but not commutative. They generate a group of order 60, isomorphic to the group of rotations of a regular icosahedron or dodecahedron, and therefore to the alternating group of degree five.
Although the algebra exists as a purely abstract construction, it can be most easily visualised in terms of operations on the edges and vertices of a dodecahedron. Hamilton himself used a flattened dodecahedron as the basis for his instructional game.
Imagine an insect crawling along a particular edge of Hamilton's labelled dodecahedron in a certain direction, say from to . We can represent this directed edge by .
- The icosian symbol equates to changing direction on any edge, so the insect crawls from to (following the directed edge ).
- The icosian symbol equates to rotating the insect's current travel anti-clockwise around the end point. In our example this would mean changing the initial direction to become .
- The icosian symbol equates to making a right-turn at the end point, moving from to .
Legacy[]
The icosian calculus is one of the earliest examples of many mathematical ideas, including:
- presenting and studying a group by generators and relations;
- a triangle group, later generalized to Coxeter groups;
- visualization of a group by a graph, which led to combinatorial group theory and later geometric group theory;
- Hamiltonian circuits and Hamiltonian paths in graph theory;[3]
- dessin d'enfant[4][5] – see dessin d'enfant: history for details.
See also[]
References[]
- ^ William Rowan Hamilton (1856). "Memorandum respecting a new System of Roots of Unity" (PDF). Philosophical Magazine. 12: 446.
- ^ Thomas L. Hankins (1980). Sir William Rowan Hamilton. Baltimore: The Johns Hopkins University Press. p. 474. ISBN 0-8018-6973-0.
- ^ a b Norman L. Biggs; E. Keith Lloyd; Robin J. Wilson (1976). Graph theory 1736–1936. Oxford: Clarendon Press. p. 239. ISBN 0-19-853901-0.
- ^ Jones, Gareth (1995). "Dessins d'enfants: bipartite maps and Galois groups". Séminaire Lotharingien de Combinatoire. B35d: 4. Archived from the original on 8 April 2017. Retrieved 2 June 2010, PDFCS1 maint: postscript (link)
- ^ W. R. Hamilton, Letter to John T. Graves "On the Icosian" (17 October 1856), Mathematical papers, Vol. III, Algebra, eds. H. Halberstam and R. E. Ingram, Cambridge University Press, Cambridge, 1967, pp. 612–625.
- Graph theory
- Abstract algebra
- Binary operations
- Rotational symmetry
- William Rowan Hamilton