Indene

From Wikipedia, the free encyclopedia
Indene
Skeletal formula
Ball-and-stick model of the indene molecule
Names
Preferred IUPAC name
1H-Indene[1]
Other names
Benzocyclopentadiene
Indonaphthene
Bicyclo[4.3.0]nona-1,3,5,7-tetraene
Identifiers
  • 95-13-6 checkY
3D model (JSmol)
635873
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.002.176 Edit this at Wikidata
EC Number
  • 202-393-6
27265
KEGG
UNII
Properties
C9H8
Molar mass 116.16
Appearance Colorless liquid[2]
Density 0.997 g/mL
Melting point −1.8 °C (28.8 °F; 271.3 K)
Boiling point 181.6 °C (358.9 °F; 454.8 K)
Insoluble
Acidity (pKa) 20.1 (in DMSO)[3]
−80.89×10−6 cm3/mol
Hazards
Main hazards Flammable
Flash point 78.3 °C (172.9 °F; 351.4 K)
NIOSH (US health exposure limits):
PEL (Permissible)
none[2]
REL (Recommended)
TWA 10 ppm (45 mg/m3)[2]
IDLH (Immediate danger)
N.D.[2]
Related compounds
Related compounds
Benzofuran, Benzothiophene, Indole
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY  (what is checkY☒N ?)
Infobox references

Indene is a flammable polycyclic hydrocarbon with chemical formula C9H8. It is composed of a benzene ring fused with a cyclopentene ring. This aromatic liquid is colorless although samples often are pale yellow. The principal industrial use of indene is in the production of indene/coumarone thermoplastic resins. Substituted indenes and their closely related indane derivatives are important structural motifs found in many natural products and biologically active molecules, such as sulindac.[4]

Isolation[]

Indene occurs naturally in coal-tar fractions boiling around 175–185 °C. It can be obtained by heating this fraction with sodium to precipitate solid "sodio-indene". This step exploits indene's weak acidity evidenced by its deprotonation by sodium to give the indenyl derivative. The sodio-indene is converted back to indene by steam distillation.[5]

Reactivity[]

Indene readily polymerises. Oxidation of indene with acid dichromate yields homophthalic acid (o-carboxylphenylacetic acid). It condenses with diethyl oxalate in the presence of sodium ethoxide to form indene–oxalic ester, and with aldehydes or ketones in the presence of alkali to form , which are highly coloured. Treatment of indene with organolithium reagents give lithium indenyl compounds:

C9H8 + RLi → LiC9H7 + RH

Indenyl is a ligand in organometallic chemistry, giving rise to many transition metal indenyl complexes.[6]

See also[]

References[]

  1. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 207. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  2. ^ Jump up to: a b c d NIOSH Pocket Guide to Chemical Hazards. "#0340". National Institute for Occupational Safety and Health (NIOSH).
  3. ^ Bordwell FG (1988). "Equilibrium acidities in dimethyl sulfoxide solution". Accounts of Chemical Research. 21 (12): 456–463. doi:10.1021/ar00156a004. Bordwell pKa Table in DMSO Archived 2008-10-09 at the Wayback Machine
  4. ^ Wu, Jie; Qiu, Guanyinsheng (2014). "Generation of Indene Derivatives by Tandem Reactions". Synlett. 25 (19): 2703–2713. doi:10.1055/s-0034-1379318.
  5. ^ Collin, Gerd; Mildenberg, Rolf; Zander, Mechthild; Höke, Hartmut; McKillip, William; Freitag, Werner; Imöhl, Wolfgang. "Resins, Synthetic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
  6. ^ O'Connor, Joseph M.; Casey, Charles P. (1987). "Ring-Slippage Chemistry of Transition Metal Cyclopentadienyl and Indenyl Complexes". Chemical Reviews. 87 (2): 307–318. doi:10.1021/cr00078a002.

External links[]

Retrieved from ""