Internal and external angles

From Wikipedia, the free encyclopedia
Internal and external angles

In geometry, an angle of a polygon is formed by two sides of the polygon that share an endpoint. For a simple (non-self-intersecting) polygon, regardless of whether it is convex or non-convex, this angle is called an interior angle (or internal angle) if a point within the angle is in the interior of the polygon. A polygon has exactly one internal angle per vertex.

If every internal angle of a simple polygon is less than π radians (180°), then the polygon is called convex.

In contrast, an exterior angle (also called an external angle or turning angle) is an angle formed by one side of a simple polygon and a line extended from an adjacent side.[1][2]: pp. 261-264 

Properties[]

  • The sum of the internal angle and the external angle on the same vertex is π radians (180°).
  • The sum of all the internal angles of a simple polygon is π(n−2) radians or 180(n–2) degrees, where n is the number of sides. The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180°, then replacing one side with two sides connected at another vertex, and so on.
  • The sum of the external angles of any simple convex or non-convex polygon, if only one of the two external angles is assumed at each vertex, is 2π radians (360°).
  • The measure of the exterior angle at a vertex is unaffected by which side is extended: the two exterior angles that can be formed at a vertex by extending alternately one side or the other are vertical angles and thus are equal.

Extension to crossed polygons[]

The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of . In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360°) revolutions one undergoes by walking around the perimeter of the polygon. In other words, the sum of all the exterior angles is 2πk radians or 360k degrees. Example: for ordinary convex polygons and concave polygons, k = 1, since the exterior angle sum is 360°, and one undergoes only one full revolution by walking around the perimeter.

References[]

  1. ^ Weisstein, Eric W. "Exterior Angle Bisector." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ExteriorAngleBisector.html
  2. ^ Posamentier, Alfred S., and Lehmann, Ingmar. The Secrets of Triangles, Prometheus Books, 2012.

External links[]

Retrieved from ""