Küpfmüller's uncertainty principle

From Wikipedia, the free encyclopedia

Küpfmüller's uncertainty principle by Karl Küpfmüller states that the relation of the rise time of a bandlimited signal to its bandwidth is a constant.[1]

with either or

Proof[]

A bandlimited signal with fourier transform in frequency space is given by the multiplication of any signal with with a rectangular function of width

as (applying the convolution theorem)

Since the fourier transform of a rectangular function is a sinc function and vice versa, follows

Now the first root of is at , which is the rise time of the pulse , now follows

Equality is given as long as is finite.

Regarding that a real signal has both positive and negative frequencies of the same frequency band, becomes , which leads to instead of

See also[]

References[]

  1. ^ Rohling, Hermann (2007). "Digitale Übertragung im Basisband" (PDF). Nachrichtenübertragung I (in German). Institut für Nachrichtentechnik, Technische Universität Hamburg-Harburg. Archived from the original (PDF) on 2007-07-12. Retrieved 2007-07-12.

Further reading[]

  • Küpfmüller, Karl; Kohn, Gerhard (2000). Theoretische Elektrotechnik und Elektronik (in German). Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-540-56500-0.
  • Hoffmann, Rüdiger (2005). Grundlagen der Frequenzanalyse - Eine Einführung für Ingenieure und Informatiker (in German) (2 ed.). Renningen, Germany: Expert Verlag. ISBN 3-8169-2447-6.
  • Girod, Bernd; Rabenstein, Rudolf; Stenger, Alexander (2007). Einführung in die Systemtheorie (in German) (4 ed.). Wiesbaden, Germany: Teubner Verlag. ISBN 978-3-83510176-0.
Retrieved from ""