Krener's theorem

From Wikipedia, the free encyclopedia

In mathematics, Krener's theorem is a result attributed to Arthur J. Krener in geometric control theory about the topological properties of of finite-dimensional control systems. It states that any attainable set of a system has nonempty interior or, equivalently, that any attainable set has nonempty interior in the topology of the corresponding orbit. Heuristically, Krener's theorem prohibits attainable sets from being hairy.

Theorem[]

Let be a smooth control system, where belongs to a finite-dimensional manifold and belongs to a control set . Consider the family of vector fields .

Let be the Lie algebra generated by with respect to the Lie bracket of vector fields. Given , if the vector space is equal to , then belongs to the closure of the interior of the attainable set from .

Remarks and consequences[]

Even if is different from , the attainable set from has nonempty interior in the orbit topology, as it follows from Krener's theorem applied to the control system restricted to the orbit through .

When all the vector fields in are analytic, if and only if belongs to the closure of the interior of the attainable set from . This is a consequence of Krener's theorem and of the orbit theorem.

As a corollary of Krener's theorem one can prove that if the system is bracket-generating and if the attainable set from is dense in , then the attainable set from is actually equal to .

References[]

  • Agrachev, Andrei A.; Sachkov, Yuri L. (2004). Control theory from the geometric viewpoint. Springer-Verlag. pp. xiv+412. ISBN 3-540-21019-9.
  • Jurdjevic, Velimir (1997). Geometric control theory. Cambridge University Press. pp. xviii+492. ISBN 0-521-49502-4.[permanent dead link]
  • Sussmann, Héctor J.; Jurdjevic, Velimir (1972). "Controllability of nonlinear systems". J. Differential Equations. 12 (1): 95–116. doi:10.1016/0022-0396(72)90007-1.
  • Krener, Arthur J. (1974). "A generalization of Chow's theorem and the bang-bang theorem to non-linear control problems". SIAM J. Control Optim. 12: 43–52. doi:10.1137/0312005.
Retrieved from ""