Lévy–Prokhorov metric
In mathematics, the Lévy–Prokhorov metric (sometimes known just as the Prokhorov metric) is a metric (i.e., a definition of distance) on the collection of probability measures on a given metric space. It is named after the French mathematician Paul Lévy and the Soviet mathematician Yuri Vasilyevich Prokhorov; Prokhorov introduced it in 1956 as a generalization of the earlier Lévy metric.
Definition[]
Let be a metric space with its Borel sigma algebra . Let denote the collection of all probability measures on the measurable space .
For a subset , define the ε-neighborhood of by
where is the open ball of radius centered at .
The Lévy–Prokhorov metric is defined by setting the distance between two probability measures and to be
For probability measures clearly .
Some authors omit one of the two inequalities or choose only open or closed ; either inequality implies the other, and , but restricting to open sets may change the metric so defined (if is not Polish).
Properties[]
- If is separable, convergence of measures in the Lévy–Prokhorov metric is equivalent to weak convergence of measures. Thus, is a metrization of the topology of weak convergence on .
- The metric space is separable if and only if is separable.
- If is complete then is complete. If all the measures in have separable support, then the converse implication also holds: if is complete then is complete. In particular, this is the case if is separable.
- If is separable and complete, a subset is relatively compact if and only if its -closure is -compact.
- If is separable, then , where is the Ky Fan metric.[1][2]
Relation to other distances[]
Let be separable. Then
- , where is the total variation distance of probability measures
- , where is the Wasserstein metric with and have finite th moment.[3]
See also[]
- Lévy metric
- Prokhorov's theorem
- Tightness of measures
- weak convergence of measures
- Wasserstein metric
- Radon distance
- Total variation distance of probability measures
Notes[]
- ^ Dudley 1989, p. 322
- ^ Račev 1991, p. 159
- ^ Račev 1991, p. 175
References[]
- Billingsley, Patrick (1999). Convergence of Probability Measures. John Wiley & Sons, Inc., New York. ISBN 0-471-19745-9. OCLC 41238534.
- Zolotarev, V.M. (2001) [1994], "Lévy–Prokhorov metric", Encyclopedia of Mathematics, EMS Press
- Dudley, R.M. (1989). Real analysis and probability. Pacific Grove, Calif. : Wadsworth & Brooks/Cole. ISBN 0-534-10050-3.
- Račev, Svetlozar T. (1991). Probability metrics and the stability of stochastic models. Chichester [u.a.] : Wiley. ISBN 0-471-92877-1.
- Measure theory
- Metric geometry
- Probability theory
- Paul Lévy (mathematician)