Laser broom

From Wikipedia, the free encyclopedia

Artistic representation

laser broom is a proposed ground-based laser beam-powered propulsion system whose purpose is to sweep space debris out of the path of other artificial satellites such as the International Space Station. It would heat one side of an object enough to change its orbit and make it hit the atmosphere sooner. Space researchers have proposed that a laser broom may help mitigate Kessler syndrome, a theoretical runaway cascade of collision events between orbiting objects.[1]

Space-based laser broom systems using a laser mounted on a satellite or space station have also been proposed.[2][3][4][5]

Mechanism[]

Lasers are designed to target debris between one and ten centimetres (0.4–3.9 in) in diameter. Collisions with such debris are commonly of such high velocity that considerable damage and numerous secondary fragments are the result. The laser broom is intended to be used at high enough power to penetrate through the atmosphere with enough remaining power to ablate material from the target.[6] The ablating material imparts a small thrust that lowers its orbital perigee into the upper atmosphere, thereby increasing drag so that its remaining orbital life is short.[7] The laser would operate in pulsed mode to avoid self-shielding of the target by the ablated plasma. The power levels of lasers in this concept are well below the power levels in concepts for more rapidly effective anti-satellite weapons.

Research into this area demonstrates the precise physics involved, which shows that space debris is re-entered regardless of the direction of laser illumination.[8][9]

Using a laser guide star and adaptive optics, a sufficiently large ground based laser (1 megajoule pulsed HF laser) can deorbit dozens of objects per day at reasonable cost.[1][10]

History[]

The Space Shuttle routinely showed evidence of "tiny" impacts upon post-flight inspection.[11]

Orion was a proposed ground-based laser broom project in the 1990s, estimated to cost $500 million.[12][13][14]

A space-based laser also called "Project Orion" was planned to be installed on the International Space Station in 2003.[15][16] In 2015, Japanese researchers proposed adding laser broom capabilities to the Extreme Universe Space Observatory telescope, to be launched to the ISS in 2017.[17][18][19][5]

In 2014, the European CLEANSPACE project published a report studying a global architecture of debris tracking and removal laser stations.[20][21]

References[]

  1. ^ Jump up to: a b Dr Claude Phipps (2011). "Removing Orbital Debris with Lasers". Advances in Space Research. 49 (9): 1283–1300. arXiv:1110.3835. Bibcode:2012AdSpR..49.1283P. doi:10.1016/j.asr.2012.02.003.
  2. ^ Shen, Shuangyan; Jin, Xing; Hao, Chang (1 August 2014). "Cleaning space debris with a space-based laser system". Chinese Journal of Aeronautics. 27 (4): 805–811. doi:10.1016/j.cja.2014.05.002. ISSN 1000-9361.
  3. ^ Wen, Quan; Yang, Liwei; Zhao, Shanghong; Fang, Yingwu; Wang, Yi; Hou, Rui (1 February 2018). "Impacts of orbital elements of space-based laser station on small scale space debris removal". Optik. 154: 83–92. Bibcode:2018Optik.154...83W. doi:10.1016/j.ijleo.2017.10.008. ISSN 0030-4026.
  4. ^ Lin; Singer (15 February 2018). "Is China's space laser for real?". Popular Science. Retrieved 10 April 2021.
  5. ^ Jump up to: a b Venton, Danielle (12 May 2015). "The Mad Plan to Clean Up Space Junk With a Laser Cannon". Wired. ISSN 1059-1028. Retrieved 10 April 2021.
  6. ^ Campbell, Jonathan (December 2008). "Using Lasers in Space: Laser Orbital Debris Removal and Asteroid Deflection" (PDF). Occasional Paper of the Center for Strategy and Technology, Air War College, Air University, Maxwell Air Force Base, Alabama. 20. Archived from the original (PDF) on 26 June 2019.
  7. ^ Ivan Bekey, "Project Orion: Orbital Debris Removal Using Ground-Based Sensors and Lasers Archived 2021-02-01 at the Wayback Machine.", Second European Conference on Space Debris, 1997, ESA-SP 393, p. 699.
  8. ^ Scharring, Stefan; Wilken, Jascha; Eckel, Hans-Albert (August 2016). "Laser-based removal of irregularly shaped space debris". Optical Engineering. 56 (1): 011007. doi:10.1117/1.OE.56.1.011007. ISSN 0091-3286.
  9. ^ Wills, Stewart (4 August 2016). "Could High-Energy Lasers Sweep Away Space Debris?". Optics & Photonics News. Retrieved 10 April 2021.
  10. ^ Adam Mann (2011). "Space Junk Crisis: Time to Bring in the Lasers". Wired. Archived from the original on 21 June 2016. Retrieved 22 June 2016.
  11. ^ Weinstock, Maia (5 September 2000). "Orbiting Junk Continues to Threaten International Space Station". Space.com. Archived from the original on 21 November 2000. Retrieved 3 February 2008.
  12. ^ Phipps, C. R.; Albrecht, G.; Friedman, H.; Gavel, D.; George, E. V.; Murray, J.; Ho, C.; Priedhorsky, W.; Michaelis, M. M.; Reilly, J. P. (March 1996). "ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser". Laser and Particle Beams. 14 (1): 1–44. Bibcode:1996LPB....14....1P. doi:10.1017/S0263034600009733. ISSN 1469-803X – via Cambridge University Press.
  13. ^ Ivan Bekey (May 1997). "Orion's Laser: Hunting Space Debris". Aerospace America. AIAA. Archived from the original on 21 July 2011. Retrieved 8 May 2011.
  14. ^ "Satellite Smashers". Air & Space Magazine. 1 March 2008. Archived from the original on 29 July 2012. Retrieved 18 August 2011.
  15. ^ AFP (16 August 2000). "NASA Hopes Laser Broom Will Help Clean Up Space Debris". www.spacedaily.com. Retrieved 10 April 2021.
  16. ^ "'Laser broom' will sweep up space junk". CBC News. 18 August 2000. Retrieved 10 April 2021.
  17. ^ "A blueprint for clearing the skies of space debris". RIKEN. 21 April 2015. Retrieved 10 April 2021.
  18. ^ Ebisuzaki, Toshikazu; Quinn, Mark N.; Wada, Satoshi; Piotrowski, Lech Wiktor; Takizawa, Yoshiyuki; Casolino, Marco; Bertaina, Mario E.; Gorodetzky, Philippe; Parizot, Etienne; Tajima, Toshiki; Soulard, Rémi; Mourou, Gérard (1 July 2015). "Demonstration designs for the remediation of space debris from the International Space Station". Acta Astronautica. 112: 102–113. Bibcode:2015AcAau.112..102E. doi:10.1016/j.actaastro.2015.03.004. hdl:2318/1578984. ISSN 0094-5765 – via Elsevier Science Direct.
  19. ^ Ackerman, Evan (23 April 2015). "Proposal Would Put Laser Cannon on ISS to Blast Space Junk". IEEE Spectrum. Retrieved 10 April 2021.
  20. ^ Esmiller, Bruno; Jacquelard, Christophe; Eckel, Hans-Albert; Wnuk, Edwin (1 November 2014). "Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE". Applied Optics. 53 (31): I45–I54. Bibcode:2014ApOpt..53I..45E. doi:10.1364/AO.53.000I45. ISSN 2155-3165. PMID 25402937.
  21. ^ "Small debris removal by laser illumination and complementary technology". CORDIS - EU Research Results.

Further reading[]

  • 2000 Earth Orbital Debris - NASA Research on Satellite and Spacecraft Effects by World Spaceflight News, CD-ROM: 862 pages ISBN 1-893472-28-0

External links[]

Retrieved from ""