Lie-admissible algebra
In algebra, a Lie-admissible algebra, introduced by A. Adrian Albert (1948), is a (possibly non-associative) algebra that becomes a Lie algebra under the bracket [a,b] = ab–ba. Examples include associative algebras,[1] Lie algebras, and Okubo algebras.
See also[]
- Malcev-admissible algebra
- Jordan-admissible algebra
References[]
- ^ Okubo 1995, p. 19
- Albert, A. Adrian (1948), "Power-associative rings", Transactions of the American Mathematical Society, 64 (3): 552–593, doi:10.2307/1990399, ISSN 0002-9947, JSTOR 1990399, MR 0027750
- "Lie-admissible_algebra", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Myung, Hyo Chul (1986), Malcev-admissible algebras, Progress in Mathematics, 64, Boston, MA: Birkhäuser Boston, Inc., ISBN 0-8176-3345-6, MR 0885089
- Okubo, Susumu (1995), Introduction to octonion and other non-associative algebras in physics, Montroll Memorial Lecture Series in Mathematical Physics, 2, Cambridge: Cambridge University Press, p. 22, ISBN 0-521-47215-6, Zbl 0841.17001
Categories:
- Non-associative algebra