List of homing endonuclease cutting sites

From Wikipedia, the free encyclopedia
Legend of nucleobases
Code Nucleotide represented
A Adenine (A)
C Cytosine (C)
G Guanine (G)
T Thymine (T)
N A, C, G or T
M A or C
R A or G
W A or T
Y C or T
S C or G
K G or T
H A, C or T
B C, G or T
V A, C or G
D A, G or T

The homing endonucleases are a special type of restriction enzymes encoded by introns or inteins. They act on the cellular DNA of the cell that synthesizes them; to be precise, in the opposite allele of the gene that encode them.[1]

Homing endonucleases[]

The list includes some of the most studied examples. The following concepts have been detailed:

  • Enzyme: Accepted name of the molecule, according to the internationally adopted nomenclature. Bibliographical references. (Further reading: Homing endonuclease § Nomenclature.)
  • SF (structural family): Any of the established families for this kind of proteins, based in their shared structural motifs: H1: LAGLIDADG family – H2: GIY-YIG family – H3: H-N-H family – H4: His-Cys box family – H5: PD-(D/E)xK – H6: EDxHD. (Further reading: Homing endonuclease § Structural families.)
  • PDB code: Code used to identify the structure of a protein in the PDB database. If no structure is available, a UniProt identifier is given instead.
  • Source: Organism that naturally produces the enzyme.
  • D: Biological domain of the source: A: archaea – B: bacteria – E: eukarya.
  • SCL: Subcellular genome: chloro: chloroplast – chrm: chromosomal – mito: mitochondrial – plasmid: other extrachromosomal – phage: bacteriophage.
  • Recognition sequence: Sequence of DNA recognized by the enzyme. The enzyme is specifically bound to this sequence.
  • Cut: Cutting site and products of the cut. Both the recognition sequence and the cutting site match usually, but sometimes the cutting site can be dozens of nucleotides away from the recognition site.
Enzyme SF PDB code Source D SCL Recognition sequence Cut
[2] H1 1P8K Aspergillus nidulans E mito 5' TTGAGGAGGTTTCTCTGTAAATAA
3' AACTCCTCCAAAGAGACATTTATT
5' ---TTGAGGAGGTTTC   TCTGTAAATAA--- 3'
3' ---AACTCCTCC   AAAGAGACATTTATT--- 5'
[3][4][5][6] H1 2EX5 E chloro 5' TAACTATAACGGTCCTAAGGTAGCGA
3' ATTGATATTGCCAGGATTCCATCGCT
5' ---TAACTATAACGGTCCTAA   GGTAGCGA--- 3'
3' ---ATTGATATTGCCAG   GATTCCATCGCT--- 5'
[7][8] H1 Q32001 E chloro 5' GAAGGTTTGGCACCTCGATGTCGGCTCATC
3' CTTCCAAACCGTGGAGCTACAGCCGAGTAG
5' ---GAAGGTTTGGCACCTCG   ATGTCGGCTCATC--- 3'
3' ---CTTCCAAACCGTG   GAGCTACAGCCGAGTAG--- 5'
[8][9] H1 Q39562 E chloro 5' CGATCCTAAGGTAGCGAAATTCA
3' GCTAGGATTCCATCGCTTTAAGT
5' ---CGATCCTAAGGTAGCGAA   ATTCA--- 3'
3' ---GCTAGGATTCCATC   GCTTTAAGT--- 5'
[10] H1 Q39559 E chloro 5' CCCGGCTAACTCTGTGCCAG
3' GGGCCGATTGAGACACGGTC
5' ---CCCGGCTAACTC   TGTGCCAG--- 3'
5' ---GGGCCGAT   TGAGACACGGTC--- 3'
I-CreI[11] H1 1BP7 Chlamydomonas reinhardtii E chloro 5' CTGGGTTCAAAACGTCGTGAGACAGTTTGG
3' GACCCAAGTTTTGCAGCACTCTGTCAAACC
5' ---CTGGGTTCAAAACGTCGTGA   GACAGTTTGG--- 3'
3' ---GACCCAAGTTTTGCAG   CACTCTGTCAAACC--- 5'
H1 1B24 Desulfurococcus mobilis A chrm 5' ATGCCTTGCCGGGTAAGTTCCGGCGCGCAT
3' TACGGAACGGCCCATTCAAGGCCGCGCGTA
5' ---ATGCCTTGCCGGGTAA   GTTCCGGCGCGCAT--- 3'
3' ---TACGGAACGGCC   CATTCAAGGCCGCGCGTA--- 5'
[12] H1 1MOW Hybrid: I-DmoI and I-CreI AE 5' CAAAACGTCGTAAGTTCCGGCGCG
3' GTTTTGCAGCATTCAAGGCCGCGC
5' ---CAAAACGTCGTAA   GTTCCGGCGCG--- 3'
3' ---GTTTTGCAG   CATTCAAGGCCGCGC--- 5'
[13][14] H3 1U3E Bacillus subtilis B phage 5' AGTAATGAGCCTAACGCTCAGCAA
3' TCATTACTCGGATTGCGAGTCGTT
  Nicking endonuclease: *
  3' ---TCATTACTCGGATTGC   GAGTCGTT--- 5'
[14][15] H3 Q38137 Bacillus subtilis B phage 5' AGTAATGAGCCTAACGCTCAACAA
3' TCATTACTCGGATTGCGAGTTGTT
  Nicking endonuclease: *
  3' ---TCATTACTCGGATTGCGAGTTGTTN35   NNNN--- 5'
[16][17] H3 P0A3U1 Lactococcus lactis B chrm 5' CACATCCATAACCATATCATTTTT
3' GTGTAGGTATTGGTATAGTAAAAA
5' ---CACATCCATAA   CCATATCATTTTT--- 3'
3' ---GTGTAGGTATTGGTATAGTAA   AAA--- 5'
H1 1M5X Monomastix sp. E 5' CTGGGTTCAAAACGTCGTGAGACAGTTTGG
3' GACCCAAGTTTTGCAGCACTCTGTCAAACC
5' ---CTGGGTTCAAAACGTCGTGA   GACAGTTTGG--- 3'
3' ---GACCCAAGTTTTGCAG   CACTCTGTCAAACC--- 5'
H1 1DQ3 Pyrococcus furiosus Vc1 A 5' GAAGATGGGAGGAGGGACCGGACTCAACTT
3' CTTCTACCCTCCTCCCTGGCCTGAGTTGAA
5' ---GAAGATGGGAGGAGGG   ACCGGACTCAACTT--- 3'
3' ---CTTCTACCCTCC   TCCCTGGCCTGAGTTGAA--- 5'
H1 2CW7 Pyrococcus kodakarensis BAA-918 A 5' CAGTACTACGGTTAC
3' GTCATGATGCCAATG
5' ---CAGTACTACG  GTTAC--- 3'
3' ---GTCATG  ATGCCAATG--- 5'
[18][19] H3 Pyrobaculum organotrophum A chrm 5' GCGAGCCCGTAAGGGTGTGTACGGG
3' CGCTCGGGCATTCCCACACATGCCC
5' ---GCGAGCCCGTAAGGGT   GTGTACGGG--- 3'
3' ---CGCTCGGGCATT   CCCACACATGCCC--- 5'
H4 1EVX Physarum polycephalum E plasmid 5' TAACTATGACTCTCTTAAGGTAGCCAAAT
3' ATTGATACTGAGAGAATTCCATCGGTTTA
5' ---TAACTATGACTCTCTTAA   GGTAGCCAAAT--- 3'
3' ---ATTGATACTGAGAG   AATTCCATCGGTTTA--- 5'
H1 Q51334 Pyrococcus sp. A chrm 5' TGGCAAACAGCTATTATGGGTATTATGGGT
3' ACCGTTTGTCGATAATACCCATAATACCCA
5' ---TGGCAAACAGCTATTAT   GGGTATTATGGGT--- 3'
3' ---ACCGTTTGTCGAT   AATACCCATAATACCCA--- 5'
[20][21] H1 P03873 E mito 5' TGTCACATTGAGGTGCACTAGTTATTAC
3' ACAGTGTAACTCCACGTGATCAATAATG
5' ---TGTCACATTGAGGTGCACT   AGTTATTAC--- 3'
3' ---ACAGTGTAACTCCAC   GTGATCAATAATG--- 5'
I-SceI[4][5] H1 1R7M Saccharomyces cerevisiae E mito 5' AGTTACGCTAGGGATAACAGGGTAATATAG
3' TCAATGCGATCCCTATTGTCCCATTATATC
5' ---AGTTACGCTAGGGATAA   CAGGGTAATATAG--- 3'
3' ---TCAATGCGATCCC   TATTGTCCCATTATATC--- 5'
[22][23] H1 1VDE Saccharomyces cerevisiae E 5' ATCTATGTCGGGTGCGGAGAAAGAGGTAATGAAATGGCA
3' TAGATACAGCCCACGCCTCTTTCTCCATTACTTTACCGT
5' ---ATCTATGTCGGGTGC   GGAGAAAGAGGTAATGAAATGGCA--- 3'
3' ---TAGATACAGCC   CACGCCTCTTTCTCCATTACTTTACCGT--- 5'
[24][25][26] H1 Saccharomyces cerevisiae E mito 5' TTTTGATTCTTTGGTCACCCTGAAGTATA
3' AAAACTAAGAAACCAGTGGGACTTCATAT
5' ---TTTTGATTCTTTGGTCACCC   TGAAGTATA--- 3'
3' ---AAAACTAAGAAACCAG   TGGGACTTCATAT--- 5'
[24][27][28] H1 Saccharomyces cerevisiae E mito 5' ATTGGAGGTTTTGGTAACTATTTATTACC
3' TAACCTCCAAAACCATTGATAAATAATGG
5' ---ATTGGAGGTTTTGGTAAC   TATTTATTACC--- 3'
3' ---TAACCTCCAAAACC   ATTGATAAATAATGG--- 5'
[24][29][30] H1 Saccharomyces cerevisiae E mito 5' TCTTTTCTCTTGATTAGCCCTAATCTACG
3' AGAAAAGAGAACTAATCGGGATTAGATGC
5' ---TCTTTTCTCTTGATTA   GCCCTAATCTACG--- 3'
3' ---AGAAAAGAGAAC   TAATCGGGATTAGATGC--- 5'
[24][31] H3 Saccharomyces cerevisiae E mito 5' AATAATTTTCTTCTTAGTAATGCC
3' TTATTAAAAGAAGAATCATTACGG
5' ---AATAATTTTCT   TCTTAGTAATGCC--- 3'
3' ---TTATTAAAAGAAGAATCATTA   CGG--- 5'
[24][32] H3 Saccharomyces cerevisiae E mito 5' GTTATTTAATGTTTTAGTAGTTGG
3' CAATAAATTACAAAATCATCAACC
5' ---GTTATTTAATG   TTTTAGTAGTTGG--- 3'
3' ---CAATAAATTACAAAATCATCA   ACC--- 5'
[20] H1 Saccharomyces cerevisiae E mito 5' TGTCACATTGAGGTGCACTAGTTATTAC
3' ACAGTGTAACTCCACGTGATCAATAATG
  Unknown **
H5 2OST Synechocystis sp. PCC 6803 B 5' GTCGGGCTCATAACCCGAA
3' CAGCCCGAGTATTGGGCTT
5' ---GTCGGGCT   CATAACCCGAA--- 3'
3' ---CAGCCCGAGTA   TTGGGCTT--- 5'
[33][34][35] H2 1I3J Escherichia coli phage T4 B phage 5' AGTGGTATCAACGCTCAGTAGATG
3' TCACCATAGT TGCGAGTCATCTAC
5' ---AGTGGTATCAAC   GCTCAGTAGATG--- 3'
3' ---TCACCATAGT   TGCGAGTCATCTAC--- 5'
[33][36] H2 Escherichia coli phage T4 B phage 5' GCTTATGAGTATGAAGTGAACACGTTATTC
3' CGAATACTCATACTTCACTTGTGCAATAAG
5' ---GCTTATGAGTATGAAGTGAACACGT   TATTC--- 3'
3' ---CGAATACTCATACTTCACTTGTG   CAATAAG--- 5'
[37] H3 Escherichia coli B phage 5' TATGTATCTTTTGCGTGTACCTTTAACTTC
3' ATACATAGAAAACGCACATGGAAATTGAAG
5' ---T   ATGTATCTTTTGCGTGTACCTTTAACTTC--- 3'
3' ---AT   ACATAGAAAACGCACATGGAAATTGAAG--- 5'
[38][39] H1 Thermococcus litoralis A chrm 5' TAYGCNGAYACNGACGGYTTYT
3' ATRCGNCTRTGNCTGCCTAARA
5' ---TAYGCNGAYACNGACGG   YTTYT--- 3'
3' ---ATRCGNCTRTGNC   TGCCTAARA--- 5'
[22][39][40] H1 Thermococcus litoralis A chrm 5' AAATTGCTTGCAAACAGCTATTACGGCTAT
3' TTTAACGAACGTTTGTCGATAATGCCGATA
  Unknown **
H1 2DCH Thermoproteus sp. IC-061 A 5' CTTCAGTATGCCCCGAAAC
3' GAAGTCATACGGGGCTTTG
5' ---CTTCAGTAT   GCCCCGAAAC--- 3'
3' ---GAAGT   CATACGGGGCTTTG--- 5'
H1 3E54 Vulcanisaeta distributa IC-141 A 5' CCTGACTCTCTTAAGGTAGCCAAA
3' GGACTGAGAGAATTCCATCGGTTT
5' ---CCTGACTCTCTTAA   GGTAGCCAAA--- 3'
3' ---GGACTGAG   AGAATTCCATCGGTTT--- 5'

*: Nicking endonuclease: These enzymes cut only one DNA strand, leaving the other strand untouched.
**: Unknown cutting site: Researchers have not been able to determine the exact cutting site of these enzymes yet.

See also[]

Information sources[]

Databases and lists of restriction enzymes:

  • Very comprehensive database of restriction enzymes supported by New England Biolabs. It includes all kind of biological, structural, kinetical and commercial information about thousands of enzymes. Also includes related literature for every molecule: Roberts RJ, Vincze T, Posfai J, Macelis D. "REBASE". Retrieved 2010-01-07. Restriction Enzyme Database.
  • Database of inteins, hosted by New England Biolabs. Perler FB. "InBase". Archived from the original on 2010-08-02. Retrieved 2010-02-05. The Intein Database and Registry.[41]
  • Detailed information for biochemical experiments: "Enzyme finder". Archived from the original on 2010-01-08. Retrieved 2010-01-07. New England Biolabs enzyme finder.
  • Alphabetical list of enzymes and their restriction sites: "GenScript Restriction Enzyme webpage". Archived from the original on 2009-07-04. Retrieved 2010-01-07.
  • General information about restriction sites and biochemical conditions for restriction reactions: "Restriction Enzymes Resource". Archived from the original on 2002-02-03. Retrieved 2010-01-07. Promega restriction enzymes webpage.

Databases of proteins:

  • Database of protein structures, solved at atomic resolution: "PDB". Research Collaboratory for Structural Bioinformatics (RCSB). Archived from the original on 2015-04-07. Retrieved 2010-01-25. RCSB Protein Data Bank.
  • Databases of proteins: Swiss Institute of Bioinformatics (SIB); European Bioinformatics Institute (EBI). "UniProtKB/Swiss-Prot & TrEMBL". Retrieved 2010-01-25. Swiss-Prot is a curated protein sequence database which strives to provide a high level of annotation (such as the description of the function of a protein, its domains structure, post-translational modifications, variants, etc.), a minimal level of redundancy and high level of integration with other databases. TrEMBL is a computer-annotated supplement of Swiss-Prot that contains all the translations of EMBL nucleotide sequence entries not yet integrated in Swiss-Prot.

Notes and references[]

  1. ^ Lambowitz AM, Belfort M (1993). "Introns as mobile genetic elements". Annu Rev Biochem. 62: 587–622. doi:10.1146/annurev.bi.62.070193.003103. PMID 8352597.
  2. ^ Naito T, Kusano K, Kobayashi I (February 1995). "Selfish behavior of restriction-modification systems". Science. 267 (5199): 897–99. Bibcode:1995Sci...267..897N. doi:10.1126/science.7846533. PMID 7846533. S2CID 31128438.
  3. ^ Jacquier A, Dujon B (June 1985). "An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene". Cell. 41 (2): 383–94. doi:10.1016/S0092-8674(85)80011-8. PMID 3886163. S2CID 20519242.
  4. ^ a b Gauthier A, Turmel M, Lemieux C (January 1991). "A group I intron in the chloroplast large subunit rRNA gene of Chlamydomonas eugametos encodes a double-strand endonuclease that cleaves the homing site of this intron". Curr Genet. 19 (1): 43–47. doi:10.1007/BF00362086. PMID 2036685. S2CID 19785524.
  5. ^ a b Marshall P, Lemieux C (August 1991). "Cleavage pattern of the homing endonuclease encoded by the fifth intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos". Gene. 104 (2): 241–5. doi:10.1016/0378-1119(91)90256-B. PMID 1916294.
  6. ^ Turmel M, Boulanger J, Schnare MN, Gray MW, Lemieux C (March 1991). "Six group I introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos". J Mol Biol. 218 (2): 293–311. doi:10.1016/0022-2836(91)90713-G. PMID 1849178.
  7. ^ Côté V, Mercier JP, Lemieux C, Turmel M (July 1993). "The single group-I intron in the chloroplast rrnL gene of Chlamydomonas humicola encodes a site-specific DNA endonuclease (I-ChuI)". Gene. 129 (1): 69–76. doi:10.1016/0378-1119(93)90697-2. PMID 8335261.
  8. ^ a b Turmel M, Gutell RR, Mercier JP, Otis C, Lemieux C (July 1993). "Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. Three internal transcribed spacers and 12 group I intron insertion sites". J Mol Biol. 232 (2): 446–67. doi:10.1006/jmbi.1993.1402. PMID 8393936.
  9. ^ Turmel M, Côté V, Otis C, Mercier JP, Gray MW, Lonergan KM, Lemieux C (July 1995). "Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)". Mol Biol Evol. 12 (4): 533–45. doi:10.1093/oxfordjournals.molbev.a040234. PMID 7659010.
  10. ^ Turmel M, Mercier JP, Côté V, Otis C, Lemieux C (July 1995). "The site-specific DNA endonuclease encoded by a group I intron in the Chlamydomonas pallidostigmatica chloroplast small subunit rRNA gene introduces a single-strand break at low concentrations of Mg2+". Nucleic Acids Res. 23 (13): 2519–25. doi:10.1093/nar/23.13.2519. PMC 307060. PMID 7630730.
  11. ^ Jurica MS, Monnat RJ, Stoddard BL (October 1998). "DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI". Mol. Cell. 2 (4): 469–76. doi:10.1016/S1097-2765(00)80146-X. PMID 9809068.
  12. ^ Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL (October 2002). "Design, activity, and structure of a highly specific artificial endonuclease". Mol. Cell. 10 (4): 895–905. doi:10.1016/S1097-2765(02)00690-1. PMID 12419232.
  13. ^ Goodrich-Blair H, Scarlato V, Gott JM, Xu M, Shub DA (October 1990). "A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1". Cell. 63 (2): 417–24. doi:10.1016/0092-8674(90)90174-D. PMID 2119891. S2CID 35873609.
  14. ^ a b Goodrich-Blair H, Shub DA (January 1996). "Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers". Cell. 84 (2): 211–21. doi:10.1016/S0092-8674(00)80976-9. PMID 8565067.
  15. ^ Goodrich-Blair H, Shub DA (September 1994). "The DNA polymerase genes of several HMU-bacteriophages have similar group I introns with highly divergent open reading frames". Nucleic Acids Res. 22 (18): 3715–21. doi:10.1093/nar/22.18.3715. PMC 308352. PMID 7937082.
  16. ^ Shearman C, Godon JJ, Gasson M (July 1996). "Splicing of a group II intron in a functional transfer gene of Lactococcus lactis". Mol Microbiol. 21 (1): 45–53. doi:10.1046/j.1365-2958.1996.00610.x. PMID 8843433. S2CID 382897.
  17. ^ Mills DA, McKay LL, Dunny GM (June 1996). "Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci". J Bacteriol. 178 (12): 3531–8. doi:10.1128/jb.178.12.3531-3538.1996. PMC 178122. PMID 8655550.
  18. ^ Lykke-Andersen J, Thi-Ngoc HP, Garrett RA (November 1994). "DNA substrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum". Nucleic Acids Res. 22 (22): 4583–90. doi:10.1093/nar/22.22.4583. PMC 308504. PMID 7984405.
  19. ^ Dalgaard JZ, Garrett RA (November 1992). "Protein-coding introns from the 23S rRNA-encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum". Gene. 121 (1): 103–10. doi:10.1016/0378-1119(92)90167-N. PMID 1427083.
  20. ^ a b Szczepanek T, Lazowska J (July 1996). "Replacement of two non-adjacent amino acids in the S.cerevisiae bi2 intron-encoded RNA maturase is sufficient to gain a homing-endonuclease activity". EMBO J. 15 (14): 3758–67. doi:10.1002/j.1460-2075.1996.tb00746.x. PMC 452048. PMID 8670880.
  21. ^ Lazowska J, Szczepanek T, Macadre C, Dokova M (1992). "Two homologous mitochondrial introns from closely related Saccharomyces species differ by only a few amino acid replacements in their Open Reading Frames: one is mobile, the other is not". C. R. Acad. Sci. Paris. 315 (2): 37–41. PMID 1330224.
  22. ^ a b Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (November 1990). "Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase". Science. 250 (4981): 651–7. Bibcode:1990Sci...250..651K. doi:10.1126/science.2146742. PMID 2146742.
  23. ^ Gimble FS, Thorner J (May 1992). "Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae". Nature. 357 (6376): 301–6. Bibcode:1992Natur.357..301G. doi:10.1038/357301a0. PMID 1534148. S2CID 4363512.
  24. ^ a b c d e Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (December 1980). "Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrme oxidase". J Biol Chem. 255 (24): 11927–41. doi:10.1016/S0021-9258(19)70224-5. PMID 6254986.
  25. ^ Hanson DK, Lamb MR, Mahler HR, Perlman PS (March 1982). "Evidence for translated intervening sequences in the mitochondrial genome of Saccharomyces cerevisiae". J Biol Chem. 257 (6): 3218–24. doi:10.1016/S0021-9258(19)81098-0. PMID 6277926.
  26. ^ Delahodde A, Goguel V, Becam AM, Creusot F, Perea J, Banroques J, Jacq C (February 1989). "Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria". Cell. 56 (3): 431–41. doi:10.1016/0092-8674(89)90246-8. PMID 2536593. S2CID 24082963.
  27. ^ Sargueil B, Delahodde A, Hatat D, Tian GL, Lazowska J, Jacq C (February 1991). "A new specific DNA endonuclease activity in yeast mitochondria". Mol Gen Genet. 225 (2): 340–1. doi:10.1007/BF00269867. PMID 1848651. S2CID 8873378.
  28. ^ Perea J, Desdouets C, Schapria M, Jacq C (January 1993). "I-Sce III: a novel group I intron-encoded endonuclease from the yeast mitochondria". Nucleic Acids Res. 21 (2): 358. doi:10.1093/nar/21.2.358. PMC 309119. PMID 8441645.
  29. ^ Moran JV, Wernette CM, Mecklenburg KL, Butow RA, Perlman PS (August 1992). "Intron 5 alpha of the COXI gene of yeast mitochondrial DNA is a mobile group I intron". Nucleic Acids Res. 20 (15): 4069–76. doi:10.1093/nar/20.15.4069. PMC 334089. PMID 1324475.
  30. ^ Seraphin B, Faye G, Hatat D, Jacq C (April 1992). "The yeast mitochondrial intron aI5 alpha: associated endonuclease activity and in vivo mobility". Gene. 113 (1): 1–8. doi:10.1016/0378-1119(92)90663-A. PMID 1314207.
  31. ^ Liang F, Romanienko PJ, Weaver DT, Jeggo PA, Jasin M (August 1996). "Chromosomal double-strand break repair in Ku80-deficient cells". PNAS. 93 (17): 8929–33. Bibcode:1996PNAS...93.8929L. doi:10.1073/pnas.93.17.8929. PMC 38571. PMID 8799130.
  32. ^ Yang J, Zimmerly S, Perlman PS, Lambowitz AM (May 1996). "Efficient integration of an intron RNA into double-stranded DNA by reverse splicing". Nature. 381 (6580): 332–5. Bibcode:1996Natur.381..332Y. doi:10.1038/381332a0. PMID 8692273. S2CID 4337808.
  33. ^ a b Bell-Pedersen D, Quirk S, Clyman J, Belfort M (July 1990). "Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications". Nucleic Acids Res. 18 (13): 3763–70. doi:10.1093/nar/18.13.3763. PMC 331075. PMID 2165250.
  34. ^ Chu FK, Maley G, Pedersen-Lane J, Wang AM, Maley F (May 1990). "Characterization of the restriction site of a prokaryotic intron-encoded endonuclease". PNAS. 87 (9): 3574–8. Bibcode:1990PNAS...87.3574C. doi:10.1073/pnas.87.9.3574. PMC 53944. PMID 2159153.
  35. ^ Bell-Pedersen D, Quirk SM, Aubrey M, Belfort M (October 1989). "A site-specific endonuclease and co-conversion of flanking exons associated with the mobile td intron of phage T4". Gene. 82 (1): 119–26. doi:10.1016/0378-1119(89)90036-X. PMID 2555262.
  36. ^ Shub DA, Gott JM, Xu MQ, Lang BF, Michel F, Tomaschewski J, Pedersen-Lane J, Belfort M (February 1988). "Structural conservation among three homologous introns of bacteriophage T4 and the group I introns of eukaryotes". PNAS. 85 (4): 1151–5. Bibcode:1988PNAS...85.1151S. doi:10.1073/pnas.85.4.1151. PMC 279724. PMID 3422485.
  37. ^ Eddy SR, Gold L (June 1991). "The phage T4 nrdB intron: a deletion mutant of a version found in the wild". Genes Dev. 5 (6): 1032–41. doi:10.1101/gad.5.6.1032. PMID 2044951.
  38. ^ Xu M, Southworth MW, Mersha FB, Hornstra LJ, Perler FB (December 1993). "In vitro protein splicing of purified precursor and the identification of a branched intermediate". Cell. 75 (7): 1371–7. doi:10.1016/0092-8674(93)90623-X. PMID 8269515. S2CID 33579721.
  39. ^ a b Perler FB, Comb DG, Jack WE, Moran LS, Qiang B, Kucera RB, Benner J, Slatko BE, Nwankwo DO, Hempstead SK, Carlow CK, Jannasch H (June 1992). "Intervening sequences in an Archaea DNA polymerase gene". PNAS. 89 (12): 5577–81. Bibcode:1992PNAS...89.5577P. doi:10.1073/pnas.89.12.5577. PMC 49335. PMID 1608969.
  40. ^ Hirata R, Ohsumk Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (April 1990). "Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae". J Biol Chem. 265 (12): 6726–33. doi:10.1016/S0021-9258(19)39210-5. PMID 2139027.
  41. ^ Perler FB (January 2002). "InBase: the Intein Database". Nucleic Acids Res. 30 (1): 383–4. doi:10.1093/nar/30.1.383. PMC 99080. PMID 11752343.
Retrieved from ""