Logarithmic integral function
In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the Siegel-Walfisz theorem it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value .
Integral representation[]
The logarithmic integral has an integral representation defined for all positive real numbers x ≠ 1 by the definite integral
Here, ln denotes the natural logarithm. The function 1/(ln t) has a singularity at t = 1, and the integral for x > 1 is interpreted as a Cauchy principal value,
Offset logarithmic integral[]
The offset logarithmic integral or Eulerian logarithmic integral is defined as
As such, the integral representation has the advantage of avoiding the singularity in the domain of integration.
Special values[]
The function li(x) has a single positive zero; it occurs at x ≈ 1.45136 92348 83381 05028 39684 85892 02744 94930... OEIS: A070769; this number is known as the Ramanujan–Soldner constant.
−Li(0) = li(2) ≈ 1.045163 780117 492784 844588 889194 613136 522615 578151... OEIS: A069284
This is where is the incomplete gamma function. It must be understood as the Cauchy principal value of the function.
Series representation[]
The function li(x) is related to the exponential integral Ei(x) via the equation
which is valid for x > 0. This identity provides a series representation of li(x) as
where γ ≈ 0.57721 56649 01532 ... OEIS: A001620 is the Euler–Mascheroni constant. A more rapidly convergent series by Ramanujan [1] is
Asymptotic expansion[]
The asymptotic behavior for x → ∞ is
where is the big O notation. The full asymptotic expansion is
or
This gives the following more accurate asymptotic behaviour:
As an asymptotic expansion, this series is not convergent: it is a reasonable approximation only if the series is truncated at a finite number of terms, and only large values of x are employed. This expansion follows directly from the asymptotic expansion for the exponential integral.
This implies e.g. that we can bracket li as:
for all .
Number theoretic significance[]
The logarithmic integral is important in number theory, appearing in estimates of the number of prime numbers less than a given value. For example, the prime number theorem states that:
where denotes the number of primes smaller than or equal to .
Assuming the Riemann hypothesis, we get the even stronger:[2]
See also[]
References[]
- ^ Weisstein, Eric W. "Logarithmic Integral". MathWorld.
- ^ Abramowitz and Stegun, p. 230, 5.1.20
- Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 5". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 228. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
- Temme, N. M. (2010), "Exponential, Logarithmic, Sine, and Cosine Integrals", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
- Special hypergeometric functions
- Integrals