Lusin's theorem
In the mathematical field of real analysis, Lusin's theorem (or Luzin's theorem, named for Nikolai Luzin) or Lusin's criterion states that an almost-everywhere finite function is measurable if and only if it is a continuous function on nearly all its domain. In the informal formulation of J. E. Littlewood, "every measurable function is nearly continuous".
Classical statement[]
For an interval [a, b], let
be a measurable function. Then, for every ε > 0, there exists a compact E ⊆ [a, b] such that f restricted to E is continuous and
Note that E inherits the subspace topology from [a, b]; continuity of f restricted to E is defined using this topology.
Also for any function f, defined on the interval [a, b] and almost-everywhere finite, if for any ε > 0 there is a function ϕ, continuous on [a, b], such that the measure of the set
is less than ε, then f is measurable.[1]
General form[]
Let be a Radon measure space and Y be a second-countable topological space equipped with a Borel algebra, and let
be a measurable function. Given , for every of finite measure there is a closed set with such that restricted to is continuous. If is locally compact, we can choose to be compact and even find a continuous function with compact support that coincides with on and such that .
Informally, measurable functions into spaces with countable base can be approximated by continuous functions on arbitrarily large portion of their domain.
On the proof[]
The proof of Lusin's theorem can be found in many classical books. Intuitively, one expects it as a consequence of Egorov's theorem and density of smooth functions. Egorov's theorem states that pointwise convergence is nearly uniform, and uniform convergence preserves continuity.
References[]
Sources
- N. Lusin. Sur les propriétés des fonctions mesurables, Comptes rendus de l'Académie des Sciences de Paris 154 (1912), 1688–1690.
- G. Folland. Real Analysis: Modern Techniques and Their Applications, 2nd ed. Chapter 7
- W. Zygmunt. Scorza-Dragoni property (in Polish), UMCS, Lublin, 1990
- M. B. Feldman, "A Proof of Lusin's Theorem", American Math. Monthly, 88 (1981), 191-2
- Lawrence C. Evans, Ronald F. Gariepy, "Measure Theory and fine properties of functions", CRC Press Taylor & Francis Group, Textbooks in mathematics, Theorem 1.14
Citations
- Theorems in real analysis
- Theorems in measure theory