Marina Huerta

From Wikipedia, the free encyclopedia
Marina Huerta
Born
Alma materUniversidad de Buenos Aires, Instituto Balseiro, Universidad Nacional de Cuyo
AwardsNew Horizons
Scientific career
FieldsTheoretical physics, Quantum Information,
InstitutionsInstituto Balseiro, CNEA and CONICET
Thesis (2000)
Doctoral advisorGuillermo Zemba and Rafael Montemayor

Marina Huerta (born 1968) is an Argentinian theoretical physicist and a physics professor. She is known for her work on quantum entropy in quantum field theory. She has provided a new interpretation of the Bekenstein bound. As of 2020, she has 29 peer-reviewed publications with more than 2000 citations.[1]

In 2014 she won the New Horizons in Physics - Breakthrough Prize[2] for "fundamental ideas about entropy in quantum field theory and quantum gravity".[3][4][5][6][7]

She researches quantum field theory and quantum information at the Centro Atómico Bariloche and the Argentinian research organization: CONICET.[8] She is a professor at the Instituto Balseiro of the Universidad Nacional de Cuyo in Argentina where her lectures on special relativity[9] have been filmed and are offered free of charge (in Spanish). The Strings School has published her lectures on entanglement entropy[10] (in English).

Biography[]

Marina Huerta was born in 1968 in Buenos Aires, Argentina. She studied at the Universidad de Buenos Aires (UBA) and then moved to the Instituto Balseiro. She obtained her Ph.D. in physics in the year 2000 after completing a doctoral dissertation on an effective description of the Quantum Hall Effect under the supervision of Guillermo Zemba and Rafael Montemayor.[11]
In 2005 and then in 2014, she spent some time at Princeton's Institute for Advanced Study.[12] On the 2014 visit, Huerta researched entanglement entropy which enlightens aspects of quantum field theory inaccessible with any other approach.[13]

She was one of the organizers of the workshop 'Quantum Gravity in the Southern Cone' in 2019.[14]

Contributions to physics[]

Huerta main contribution in theoretical physics is in geometric entropy in quantum field theory, holography, quantum gravity and quantum information theory. She uses interlacing entropy as an indicator of confinement and phase transitions. It is considered the natural order parameter for systems with topological order. Relative entropy's properties give rise to the Bekenstein dimension, energy levels in field theories and the generalized second law. She has provided a new interpretation of the Bekenstein bound using relative entropy and distinguishability of states.

Interlacing entropy is essential in holography, which relates quantum gravity theories to non-gravitational field theories with one less dimension. Interlacing is necessary to explain the connectivity of space and to describe physics beyond the event horizon.

Selected publications[]

  • On the RG running of the entanglement entropy of a circle. In: Physical Review D. Band 85, 2012, S. 125016
  • Towards a derivation of holographic entanglement entropy. In: Journal of High Energy Physics (JHEP). 1105 (2011) 036
  • Entanglement entropy in free quantum field theory. In: Journal of Physics A. Band 42, 2009, S. 504007, Arxiv
  • A Finite entanglement entropy and the c-Theorem. In: Physics Letters B. Band 600, 2004, S. 142–150

Reference[]

  1. ^ "Scopus preview - Huerta, M. - Author details - Scopus".
  2. ^ "Breakthrough Prize". breakthroughprize.org. Retrieved 2020-05-11.
  3. ^ The Breakthrough Prize. "Recipients Of The 2015 Breakthrough Prizes In Fundamental Physics And Life Sciences Announced".
  4. ^ "Físicos galardonados volvieron a Bariloche con su premio". Diario Río Negro (in European Spanish). 2014-11-14. Retrieved 2020-05-11.
  5. ^ Overbye, Dennis (2014-11-09). "Scientists, and Universe's Odd Behavior, Are Recognized With $3 Million Prizes". The New York Times. ISSN 0362-4331. Retrieved 2020-05-18.
  6. ^ "Breakthrough Prize – Fundamental Physics Breakthrough Prize Laureates – Marina Huerta". breakthroughprize.org. Retrieved 2020-05-12.
  7. ^ "Docentes del Balseiro recibieron una importante distinción internacional".{{cite web}}: CS1 maint: url-status (link)
  8. ^ "Staff". fisica.cab.cnea.gov.ar. Retrieved 2020-05-22.
  9. ^ "Instituto Balseiro - Clases en linea".{{cite web}}: CS1 maint: url-status (link)
  10. ^ Entanglement Entropy - I by Marina Huerta. YouTube. Archived from the original on 2021-12-10.
  11. ^ "RRHH". fisica.cab.cnea.gov.ar. Retrieved 2020-05-22.
  12. ^ IAS at the Wayback Machine (archived 2015-11-21)
  13. ^ "Marina Huerta". Institute for Advanced Study. 9 December 2019. Retrieved 2020-05-22.
  14. ^ "Home - VIII Quantum Gravity in the Southern Cone". fisica.cab.cnea.gov.ar. Retrieved 2020-05-18.
Retrieved from ""