Mark Child

From Wikipedia, the free encyclopedia

Mark Sheard Child
Born (1937-08-17) 17 August 1937 (age 84)
Alma materClare College, Cambridge
AwardsFellow of the Royal Society
Scientific career
InstitutionsUniversity of Oxford
ThesisThe vibrational spectra of electronically degenerate molecules (1963)
Doctoral advisorH. Christopher Longuet-Higgins[1]
Doctoral studentsPeter Coveney[2]
Websiteresearch.chem.ox.ac.uk/mark-child.aspx

Mark Sheard Child FRS (born 17 August 1937)[3] is a British chemist, and Emeritus Fellow of St Edmund Hall, Oxford.

Education[]

Child attended Pocklington School from 1947 to 1955.[4][failed verification] He earned his Doctor of Philosophy degree from the University of Cambridge in 1963 with a thesis on The vibrational spectra of electronically degenerate molecules.

Research[]

Child's research interests include semiclassical mechanics,[5] Molecular collision theory,[6] Rydberg states[7][8][9][10] and Quantum Level Structures at a Saddle point.[11][12][13][14]

References[]

  1. ^ "Chemistry Tree - Mark S. Child Details".
  2. ^ Coveney, Peter V (1985). Semiclassical methods in scattering and spectroscopy (DPhil thesis). University of Oxford.
  3. ^ CHILD, Prof. Mark Sheard, Who's Who 2014, A & C Black, 2014; online edn, Oxford University Press, 2014
  4. ^ http://www.pocklingtonschool.com
  5. ^ Mark Child (1991). Semiclassical mechanics with molecular applications. Oxford: Clarendon Press. ISBN 978-0-19-855654-1.
  6. ^ Mark Child (1996). Molecular collision theory. New York: Dover Publications. ISBN 978-0-486-69437-5.
  7. ^ Mark Child (2011). Theory of Molecular Rydberg States (Cambridge Molecular Science). Cambridge, UK: Cambridge University Press. ISBN 978-0-521-76995-2.
  8. ^ Child, M. S.; Jungen, C. (1990). "Quantum defect theory for asymmetric tops: Application to the Rydberg spectrum of H2O". The Journal of Chemical Physics. 93 (11): 7756. Bibcode:1990JChPh..93.7756C. doi:10.1063/1.459355.
  9. ^ Child, M. S. (1997). "The Rydberg states of H2O". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 355 (1729): 1623–1636. Bibcode:1997RSPTA.355.1623C. doi:10.1098/rsta.1997.0080. S2CID 93739122.
  10. ^ Hiyama, M.; Child, M. S. (2002). "Ab initio R-matrix/multichannel quantum defect theory study of nitric oxide". Journal of Physics B: Atomic, Molecular and Optical Physics. 35 (5): 1337. Bibcode:2002JPhB...35.1337H. doi:10.1088/0953-4075/35/5/316.
  11. ^ Child, M. S.; Weston, T.; Tennyson, J. (1999). "Quantum monodromy in the spectrum of H2O and other systems: New insight into the level structure of quasi-linear molecules". Molecular Physics. 96 (3): 371. Bibcode:1999MolPh..96..371C. CiteSeerX 10.1.1.324.1149. doi:10.1080/00268979909482971.
  12. ^ Jacobson, M. P.; Child, M. S. (2001). "Spectroscopic signatures of bond-breaking internal rotation. II. Rotation-vibration level structure and quantum monodromy in HCP". The Journal of Chemical Physics. 114 (1): 262. Bibcode:2001JChPh.114..262J. doi:10.1063/1.1330746.
  13. ^ Child, M. S. (2007). "Quantum Monodromyand Molecular Spectroscopy". Advances in Chemical Physics. Advances in Chemical Physics. 136. pp. 39–02. doi:10.1002/9780470175422.ch2. ISBN 9780470175422.
  14. ^ Cooper, C. D.; Child, M. S. (2005). "Quantum level structures at a Fermi resonance with angular momentum: Classical periodic orbits, catastrophe maps and quantum monodromy". Physical Chemistry Chemical Physics. 7 (14): 2731–2739. Bibcode:2005PCCP....7.2731C. doi:10.1039/B502772C. PMID 16189587.
Retrieved from ""