Maximum energy product

From Wikipedia, the free encyclopedia
Historical trends in the maximum energy product of permanent magnets (MGOe units).

In magnetics, the maximum energy product is an important figure-of-merit for the strength of a permanent magnet material. It is often denoted (BH)max and is typically given in units of either kJ/m3 (kilojoules per cubic meter, in SI electromagnetism) or MGOe (mega-gauss-oersted, in gaussian electromagnetism).[1][2] 1 MGOe is equivalent to 7.958 kJ/m3.[3]

During the 20th century, the maximum energy product of commercially available magnetic materials rose from around 1 MGOe (e.g. in KS Steel) to over 50 MGOe (in neodymium magnets).[4] Other important permanent magnet properties include the remanence (Br) and coercivity (Hc); these quantities are also determined from the saturation loop and are related to the maximum energy product, though not directly.

Definition and significance[]

(BH)max can be graphically defined as the area of the largest rectangle that can drawn in the second quadrant of the B-H loop.

The maximum energy product is defined based on the magnetic hysteresis saturation loop (B-H curve), in the demagnetizing portion where the B and H fields are in opposition. It is defined as the maximal value of the product of B and H along this curve (actually, the maximum of the negative of the product, BH, since they have opposing signs):

Equivalently, it can be graphically defined as the area of the largest rectangle that can be drawn between the origin and the saturation demagnetization B-H curve (see figure).

The significance of (BH)max is that the volume of magnet necessary for any given application tends to be inversely proportional to (BH)max. This is illustrated by considering a simple magnetic circuit containing a permanent magnet of volume Volmag and an air gap of volume Volgap, connected to each other by a magnetic core. Suppose the goal is to reach a certain field strength Bgap in the gap. In such a situation, the total magnetic energy in the gap (volume-integrated magnetic energy density) is directly equal to half the volume-integrated BH in the magnet:[5]

thus in order to achieve the desired magnetic field in the gap, the required volume of magnet can be minimized by maximizing BH in the magnet. By choosing a magnetic material with a high (BH)max, and also choosing the aspect ratio of the magnet so that its BH is equal to (BH)max, the required volume of magnet is minimized.

References[]

  1. ^ "What is Maximum Energy Product / BHmax and How Does It Correspond to Magnet Grade? | Dura Magnetics USA". 15 September 2014. Retrieved 2020-01-20.
  2. ^ "Glossary of Magnet Terminology". K&J Magnetics. Retrieved 2021-01-31.
  3. ^ eFunda: Glossary: Units: Energy Density Units: Megagauss-Oersted (MG⋅Oe)
  4. ^ "COBALT: Essential to High Performance Magnetics" (PDF). Arnold Magnetic Technologies. 2012.
  5. ^ Fitzgerald, A.E.; Kingsley, Charles, Jr.; Umans, Stephen D. (2003). Electric Machinery (6th ed.). McGraw-Hill. p. 34-. ISBN 978-0-07-366009-7.
Retrieved from ""