Mellin inversion theorem

From Wikipedia, the free encyclopedia

In mathematics, the Mellin inversion formula (named after Hjalmar Mellin) tells us conditions under which the inverse Mellin transform, or equivalently the inverse two-sided Laplace transform, are defined and recover the transformed function.

Method[]

If is analytic in the strip , and if it tends to zero uniformly as for any real value c between a and b, with its integral along such a line converging absolutely, then if

we have that

Conversely, suppose f(x) is piecewise continuous on the positive real numbers, taking a value halfway between the limit values at any jump discontinuities, and suppose the integral

is absolutely convergent when . Then f is recoverable via the inverse Mellin transform from its Mellin transform [citation needed].

Boundedness condition[]

We may strengthen the boundedness condition on if f(x) is continuous. If is analytic in the strip , and if , where K is a positive constant, then f(x) as defined by the inversion integral exists and is continuous; moreover the Mellin transform of f is for at least .

On the other hand, if we are willing to accept an original f which is a generalized function, we may relax the boundedness condition on to simply make it of polynomial growth in any closed strip contained in the open strip .

We may also define a Banach space version of this theorem. If we call by the weighted Lp space of complex valued functions f on the positive reals such that

where ν and p are fixed real numbers with p>1, then if f(x) is in with , then belongs to with and

Here functions, identical everywhere except on a set of measure zero, are identified.

Since the two-sided Laplace transform can be defined as

these theorems can be immediately applied to it also.

See also[]

References[]

  • Flajolet, P.; Gourdon, X.; Dumas, P. (1995). "Mellin transforms and asymptotics: Harmonic sums" (PDF). Theoretical Computer Science. 144 (1–2): 3–58. doi:10.1016/0304-3975(95)00002-E.
  • McLachlan, N. W. (1953). Complex Variable Theory and Transform Calculus. Cambridge University Press.
  • Polyanin, A. D.; Manzhirov, A. V. (1998). Handbook of Integral Equations. Boca Raton: CRC Press. ISBN 0-8493-2876-4.
  • Titchmarsh, E. C. (1948). Introduction to the Theory of Fourier Integrals (Second ed.). Oxford University Press.
  • Yakubovich, S. B. (1996). Index Transforms. World Scientific. ISBN 981-02-2216-5.
  • Zemanian, A. H. (1968). Generalized Integral Transforms. John Wiley & Sons.

External links[]

Retrieved from ""