Metasymplectic space

From Wikipedia, the free encyclopedia

In mathematics, a metasymplectic space, introduced by Freudenthal (1959) and Tits (1974, 10.13), is a Tits building of type F4 (a specific generalized incidence structure). The four types of vertices are called points, lines, planes, and symplecta.

References[]

  • Freudenthal, Hans (1959), "Beziehungen der E7 und E8 zur Oktavenebene. VIII-IX.", Nederlandse Akademie van Wetenschappen. Proceedings. Series A. (in German), 62: 447–465
  • Tits, Jacques (1974), Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, vol. 386, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-540-38349-9, MR 0470099
Retrieved from ""