Mie potential

From Wikipedia, the free encyclopedia

The Mie potential is an intermolecular pair potential, i.e. it describes the interactions between particles on the atomic level. The Mie potential is one of the most simple, yet most powerful pair potentials, which describes both repulsive and dispersive interactions of atoms and molecules. The Mie potential is written as[1]

with

.

In Eq. (1), is the distance between two particles, is the dispersion energy, and indicates the distance of . The parameter is usually referred to as 'size of the particle'. The parameters and characterize the shape of the potential: describes the character of the repulsion and describes the character of the attraction.

The Mie potential is attributed to the German physician Gustave Mie.[2] The Mie potential is the generalized case of the Lennard-Jones (LJ) potential – the probably most frequently used pair potential.[3][4] Hence, the LJ potential has and in Eq. (1). The attractive exponent is physically justified by the London dispersion,[5] whereas no justification for a certain value for the repulsive exponent is known. The repulsive steepness parameter has a significant influence on the modelling of thermodynamic derivative properties, e.g. the compressibility and the speed of sound. Therefore, the Mie potential is presently considered the more sophisticated intermolecular potential than the more simple Lennard-Jones potential. The Mie potential is used today in state-of-the-art force fields in molecular modeling. Mostly, the attractive exponent is thereby chosen to be , whereas the repulsive exponent is used as an adjustable parameter during the model fitting.

Thermophysical properties of the Mie potential have been frequently studied in the past decades, e.g. its virial coefficients,[6] interfacial[7] and vapor-liquid equilibrium[8][9] properties.

References[]

  1. ^ J., Stone, A. (2013). The theory of intermolecular forces. Oxford Univ. Press. ISBN 978-0-19-175141-7. OCLC 915959704.
  2. ^ Mie, Gustav (1903). "Zur kinetischen Theorie der einatomigen Körper". Annalen der Physik (in German). 316 (8): 657–697. Bibcode:1903AnP...316..657M. doi:10.1002/andp.19033160802.
  3. ^ Stephan, Simon; Staubach, Jens; Hasse, Hans (2020-11-XX). "Review and comparison of equations of state for the Lennard-Jones fluid". Fluid Phase Equilibria. 523: 112772. doi:10.1016/j.fluid.2020.112772. {{cite journal}}: Check date values in: |date= (help)
  4. ^ Stephan, Simon; Thol, Monika; Vrabec, Jadran; Hasse, Hans (2019-10-28). "Thermophysical Properties of the Lennard-Jones Fluid: Database and Data Assessment". Journal of Chemical Information and Modeling. 59 (10): 4248–4265. doi:10.1021/acs.jcim.9b00620. ISSN 1549-9596. PMID 31609113.
  5. ^ Lafitte, Thomas; Apostolakou, Anastasia; Avendaño, Carlos; Galindo, Amparo; Adjiman, Claire S.; Müller, Erich A.; Jackson, George (2013-10-21). "Accurate statistical associating fluid theory for chain molecules formed from Mie segments". The Journal of Chemical Physics. 139 (15): 154504. Bibcode:2013JChPh.139o4504L. doi:10.1063/1.4819786. hdl:10044/1/12859. ISSN 0021-9606. PMID 24160524.
  6. ^ Sadus, Richard J. (2018-08-21). "Second virial coefficient properties of the n - m Lennard-Jones/Mie potential". The Journal of Chemical Physics. 149 (7): 074504. Bibcode:2018JChPh.149g4504S. doi:10.1063/1.5041320. ISSN 0021-9606. PMID 30134705.
  7. ^ Galliero, Guillaume; Piñeiro, Manuel M.; Mendiboure, Bruno; Miqueu, Christelle; Lafitte, Thomas; Bessieres, David (2009-03-14). "Interfacial properties of the Mie n−6 fluid: Molecular simulations and gradient theory results". The Journal of Chemical Physics. 130 (10): 104704. Bibcode:2009JChPh.130j4704G. doi:10.1063/1.3085716. ISSN 0021-9606. PMID 19292546.
  8. ^ Werth, Stephan; Stöbener, Katrin; Horsch, Martin; Hasse, Hans (2017-06-18). "Simultaneous description of bulk and interfacial properties of fluids by the Mie potential". Molecular Physics. 115 (9–12): 1017–1030. arXiv:1611.07754. Bibcode:2017MolPh.115.1017W. doi:10.1080/00268976.2016.1206218. ISSN 0026-8976. S2CID 49331008.
  9. ^ Janeček, Jiří; Said-Aizpuru, Olivier; Paricaud, Patrice (2017-09-12). "Long Range Corrections for Inhomogeneous Simulations of Mie n – m Potential". Journal of Chemical Theory and Computation. 13 (9): 4482–4491. doi:10.1021/acs.jctc.7b00212. ISSN 1549-9618. PMID 28742959.
Retrieved from ""