Mired

From Wikipedia, the free encyclopedia
Close up of the Planckian locus in the CIE 1960 color space, with the isotherms in mireds. Note the even spacing of the isotherms when using the reciprocal temperature scale. The even spacing of the isotherms on the locus implies that the mired scale is a better measure of perceptual color difference than the temperature scale.
Close up of the Planckian locus in the CIE 1960 color space, with the isotherms in kelvins. The range of isothermal color temperatures, as in the previous diagram, is from 1000 K (1000 MK−1) to 10000 K (100 MK−1).

Contracted from the term micro reciprocal degree, the mired is a unit of measurement used to express color temperature. It is given by the formula

where M is the mired numerical value desired, T is the color temperature, and "K" denotes kelvins (thereby forcing T to be expressed in terms of kelvins).

For convenience, decamireds are sometimes used, with each decamired equaling ten mireds. The SI term for this unit is the reciprocal megakelvin (MK−1), shortened to mirek, but this term has not gained traction.[1]

The use of the term mired dates back to Irwin G. Priest's observation in 1932 that the just noticeable difference between two is based on the difference of the reciprocals of their temperatures, rather than the difference in the temperatures themselves.[2]

Examples[]

Mired difference can be quickly approximated with such a nomogram

A blue sky, which has a color temperature T of about 25000 K, has a mired value of M = 40 mireds, while a standard electronic photography flash, having a color temperature T of 5000 K, has a mired value of M = 200 mireds.

In photography, mireds are used to indicate the color temperature shift provided by a filter or gel for a given film and light source. For instance, to use daylight film (5700 K) to take a photograph under a tungsten light source (3200 K) without introducing a color cast, one would need a corrective filter or gel providing a mired shift

This corresponds to a color temperature blue (CTB) filter.[3]

Color gels with negative mired values appear green or blue, while those with positive values appear amber or red.

References[]

  1. ^ Ohta, Noboru; Robertson, Alan R. (2005). Colorimetry: Fundamentals and Applications. Wiley. p. 84. ISBN 0-470-09472-9.
  2. ^ Priest, Irwin G. (February 1932). "A proposed scale for use in specifying the chromaticity of incandescent illuminants and various phases of daylight" (abstract). JOSA. 23 (2): 41–45. doi:10.1364/JOSA.23.000041.
  3. ^ Brown, Blain (2002). Cinematography: Theory and Practice : Imagemaking for Cinematographers. Focal Press. p. 172. ISBN 0-240-80500-3.
Retrieved from ""