Nuclear operator

From Wikipedia, the free encyclopedia

In mathematics, nuclear operators are an important class of linear operators introduced by Alexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to the projective tensor product of two topological vector spaces (TVSs).

Preliminaries and notation[]

Throughout let X,Y, and Z be topological vector spaces (TVSs) and L : XY be a linear operator (no assumption of continuity is made unless otherwise stated).

  • The projective tensor product of two locally convex TVSs X and Y is denoted by and the completion of this space will be denoted by .
  • L : XY is a topological homomorphism or homomorphism, if it is linear, continuous, and is an open map, where , the image of L, has the subspace topology induced by Y.
    • If S is a subspace of X then both the quotient map XX/S and the canonical injection SX are homomorphisms.
  • The set of continuous linear maps XZ (resp. continuous bilinear maps ) will be denoted by L(X, Z) (resp. B(X, Y; Z)) where if Z is the underlying scalar field then we may instead write L(X) (resp. B(X, Y)).
  • Any linear map can be canonically decomposed as follows: where defines a bijection called the canonical bijection associated with L.
  • X* or will denote the continuous dual space of X.
    • To increase the clarity of the exposition, we use the common convention of writing elements of with a prime following the symbol (e.g. denotes an element of and not, say, a derivative and the variables x and need not be related in any way).
  • will denote the algebraic dual space of X (which is the vector space of all linear functionals on X, whether continuous or not).
  • A linear map L : HH from a Hilbert space into itself is called positive if for every . In this case, there is a unique positive map r : HH, called the square-root of L, such that .[1]
    • If is any continuous linear map between Hilbert spaces, then is always positive. Now let R : HH denote its positive square-root, which is called the absolute value of L. Define first on by setting for and extending continuously to , and then define U on by setting for and extend this map linearly to all of . The map is a surjective isometry and .
  • A linear map is called compact or completely continuous if there is a neighborhood U of the origin in X such that is precompact in Y.[2]
    • In a Hilbert space, positive compact linear operators, say L : HH have a simple spectral decomposition discovered at the beginning of the 20th century by Fredholm and F. Riesz:[3]

      There is a sequence of positive numbers, decreasing and either finite or else converging to 0, and a sequence of nonzero finite dimensional subspaces of H (i = 1, 2, ) with the following properties: (1) the subspaces are pairwise orthogonal; (2) for every i and every , ; and (3) the orthogonal of the subspace spanned by is equal to the kernel of L.[3]

Notation for topologies[]

  • σ(X, X′) denotes the coarsest topology on X making every map in X′ continuous and or denotes X endowed with this topology.
  • σ(X′, X) denotes weak-* topology on X* and or denotes X′ endowed with this topology.
    • Note that every induces a map defined by . σ(X′, X) is the coarsest topology on X′ making all such maps continuous.
  • b(X, X′) denotes the topology of bounded convergence on X and or denotes X endowed with this topology.
  • b(X′, X) denotes the topology of bounded convergence on X′ or the strong dual topology on X′ and or denotes X′ endowed with this topology.
    • As usual, if X* is considered as a topological vector space but it has not been made clear what topology it is endowed with, then the topology will be assumed to be b(X′, X).

A canonical tensor product as a subspace of the dual of Bi(X, Y)[]

Let X and Y be vector spaces (no topology is needed yet) and let Bi(X, Y) be the space of all bilinear maps defined on and going into the underlying scalar field.

For every , let be the canonical linear form on Bi(X, Y) defined by for every u ∈ Bi(X, Y). This induces a canonical map defined by , where denotes the algebraic dual of Bi(X, Y). If we denote the span of the range of