Optical coherence tomography angiography

From Wikipedia, the free encyclopedia


Optical coherence tomography angiography (OCTA) is a non-invasive imaging technique based on optical coherence tomography (OCT) developed to visualize vascular networks in the human retina,[1][2][3] choroid,[4][5] skin[6] and various animal models.[7][8][9] OCTA may make use of speckle variance optical coherence tomography.

OCTA uses low-coherence interferometry to measure changes in backscattered signal to differentiate areas of blood flow from areas of static tissue.[10] To correct for patient movement during scanning, bulk tissue changes in the axial direction are eliminated, ensuring that all detected changes are due to red blood cell movement.[11] This form of OCT requires a very high sampling density in order to achieve the resolution needed to detect the tiny capillaries found in the retina. Recent advancements in OCT acquisition speed have made it possible the required sampling density to obtain a high enough resolution for OCTA.[11][12] This has allowed OCTA to become widely used clinically to diagnose a variety of ophthalmological diseases, such as, age related macular degeneration (AMD), diabetic retinopathy, artery and vein occlusions, and glaucoma.[11]

Medical uses[]

While conventional dye-based angiography is still the common gold standard, OCTA has been evaluated and used across many diseases.[13]

Uses include diabetic retinopathy (DR). In DR, OCTA was shown to resolve previously established markers of severe disease (i.e., vitreous proliferation). Moreover, OCTA was shown to provide a plethora of additional biomarkers including subclinical loss of vessel density.[14][15] Thus, OCTA may offer in future the potential to monitor the progression of DR at an earlier, pre-clinical state.

Similarly, OCTA was shown to provide more refined information compared to dye-based angiography in other vascular occlusive diseases such as central (or branch) retinal vein occlusion.[16][17]


How it works[]

OCTA detects moving particles (red blood cells) by comparing sequential B-scans at the same cross-sectional location. To simply put it, the backscattered light reflected back from static samples would remain the same over multiple B-scans while the backscattered light reflected back from moving samples would fluctuate. Multiple algorithms have been proposed and utilized to contrast such motion signals from static signals in various biological tissues.[18][19][20][21][22][23]

Calculating blood flow[]

An algorithm developed by Jia et al.,[24] is used to determine blood flow in the retina. The split-spectrum amplitude decorrelation angiography (SSADA) algorithm calculates the decorrelation in the reflected light that is detected by the OCT device.

The blood vessels are where the most decorrelation occurs allowing them to be visualized, while static tissue has low decorrelation values.[25] The equation takes into account fluctuations of the received signal amplitude or intensity over time. Greater fluctuations receive a greater decorrelation value and indicate more movement.

A significant challenge when trying to image the eye is patient movement and saccadic movement of the eye. Movement introduces a lot of noise into the signal making tiny vessels impossible to distinguish. One approach to decreasing the influence of movement on signal detection is to shorten the scanning time. A short scan time prevents too much patient movement during signal acquisition. With the development of Fourier-domain OCT, spectral-domain OCT, and swept source signal acquisition time was greatly improved making OCTA possible.[26] OCTA scan time is now around three seconds, however, saccadic eye movement still causes a low signal-to-noise ratio. This is where SSADA proves to be very advantageous as it is able to greatly improve SNR by averaging the decorrelation across the number of B-scans, making the microvasculature of the retina visible.[25]

History[]

Initial efforts to measure blood flow using OCT utilized the Doppler effect.[27][28] By comparing the phase of successive A-mode scans, the velocity of blood flow can be determined via the Doppler equation. This was deemed Optical Doppler Tomography; the development of spectral domain OCT (SD-OCT) and swept-source OCT (SS-OCT) greatly improved scan times since this phase information was readily accessible. Still, Doppler techniques were fundamentally limited by bulk eye motion artefacts, especially as longer scan times became important for increasing sensitivity.[29]In the mid 2000s systems began compensating for bulk eye motion, which significantly reduced motion artefacts. Systems also began to measure the variance and power of the Doppler phase between successive A-mode and B-mode scans; later it was shown that successive B-mode scans must be corrected for motion and the phase variance data must be thresholded to remove bulk eye motion distortion.[29][30][31]

By 2012, split spectrum amplitude decorrelation was shown to be effective at increasing SNR and decreasing motion artefacts.[24] Commercial OCT-A devices also emerged around this time, beginning with the OptoVue AngioVue in 2014 (SD-OCT) and the Topcon Atlantis/Triton soon after (SS-OCT).[29]

Other angiography techniques[]

The most common angiographic techniques were fluorescein (FA) or indocyanine green angiography (ICGA), which both involve the use of an injectable dye. Intravenous dye injection is time consuming and can have adverse side effects. Furthermore, the edges of the capillaries can become blurred due to dye leakage and imaging of the retina can only be 2D when using this method.[26] With OCTA, dye injection is not needed making the imaging process faster and more comfortable while at the same time improving the quality of the image.

The current gold standards of angiography, fluorescein angiography (FA) and indocyanine green angiography (ICGA), both require dye to be injected.[32][33]

OCTA does not need dye, but this method takes a long time to capture an image and is susceptible to motion artefacts. The dyes used in FA and ICGA can cause nausea, vomiting, and general discomfort, and only have an effective lifetime on the order of a few minutes.[34]

From a physics perspective, both dye-based methods utilize the phenomenon of fluorescence. For FA, this corresponds to an excitation wavelength of blue (around 470 nm) and an emission wavelength near yellow (520 nm).[35] For IGCA, the newer method, the excitation wavelength is between 750 and 800 nm while emission occurs above 800 nm.[36]

References[]

  1. ^ Kashani, Amir H.; Lee, Sun Young; Moshfeghi, Andrew; Durbin, Mary K.; Puliafito, Carmen A. (November 2015). "Optical Coherence Tomography Angiography of Retinal Venous Occlusion". Retina. 35 (11): 2323–2331. doi:10.1097/iae.0000000000000811. ISSN 0275-004X. PMID 26457395. S2CID 26880837.
  2. ^ Spaide, Richard F.; Klancnik, James M.; Cooney, Michael J. (2015-01-01). "Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography". JAMA Ophthalmology. 133 (1): 45–50. doi:10.1001/jamaophthalmol.2014.3616. ISSN 2168-6165. PMID 25317632.
  3. ^ Gildea, D (2019). "The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: a systematic review". International Ophthalmology. 39 (10): 2413–2433. doi:10.1007/s10792-018-1034-8. PMID 30382465.
  4. ^ Levison, Ashleigh L; Baynes, Kimberly M; Lowder, Careen Y; Kaiser, Peter K; Srivastava, Sunil K (2016-08-18). "Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis". British Journal of Ophthalmology. 101 (5): 616–622. doi:10.1136/bjophthalmol-2016-308806. ISSN 0007-1161. PMID 27539089. S2CID 29133966.
  5. ^ Chu, Zhongdi; Weinstein, Jessica E.; Wang, Ruikang K.; Pepple, Kathryn L. (October 2020). "Quantitative Analysis of the Choriocapillaris in Uveitis Using En Face Swept-Source Optical Coherence Tomography Angiography". American Journal of Ophthalmology. 218: 17–27. doi:10.1016/j.ajo.2020.05.006. ISSN 0002-9394. PMC 7529782. PMID 32413411.
  6. ^ Xu, Jingjiang; Song, Shaozhen; Men, Shaojie; Wang, Ruikang K. (2017-11-28). "Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations". Journal of Biomedical Optics. 22 (11): 1–11. doi:10.1117/1.jbo.22.11.116007. ISSN 1083-3668. PMC 5712670. PMID 29185292.
  7. ^ Fischer, M. Dominik; Huber, Gesine; Beck, Susanne C.; Tanimoto, Naoyuki; Muehlfriedel, Regine; Fahl, Edda; Grimm, Christian; Wenzel, Andreas; Remé, Charlotte E.; van de Pavert, Serge A.; Wijnholds, Jan (2009-10-19). "Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography". PLOS ONE. 4 (10): e7507. doi:10.1371/journal.pone.0007507. ISSN 1932-6203. PMC 2759518. PMID 19838301.
  8. ^ Merkle, Conrad W.; Zhu, Jun; Bernucci, Marcel T.; Srinivasan, Vivek J. (November 2019). "Dynamic Contrast Optical Coherence Tomography reveals laminar microvascular hemodynamics in the mouse neocortex in vivo". NeuroImage. 202: 116067. doi:10.1016/j.neuroimage.2019.116067. ISSN 1053-8119. PMC 6819266. PMID 31394180.
  9. ^ Chen, Siyu; Liu, Qi; Shu, Xiao; Soetikno, Brian; Tong, Shanbao; Zhang, Hao F. (2016-08-10). "Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography". Biomedical Optics Express. 7 (9): 3377–3389. doi:10.1364/boe.7.003377. ISSN 2156-7085. PMC 5030017. PMID 27699105.
  10. ^ de Carlo, Talisa E; Romano, Andre; Waheed, Nadia K; Duker, Jay S (April 2015). "A review of optical coherence tomography angiography (OCTA)". International Journal of Retina and Vitreous. 1 (1): 5. doi:10.1186/s40942-015-0005-8. ISSN 2056-9920. PMC 5066513. PMID 27847598.
  11. ^ a b c de Carlo, Talisa E; Romano, Andre; Waheed, Nadia K; Duker, Jay S (2015). "A review of optical coherence tomography angiography (OCTA)". International Journal of Retina and Vitreous. 1 (1): 5. doi:10.1186/s40942-015-0005-8. ISSN 2056-9920. PMC 5066513. PMID 27847598.
  12. ^ Drexler, Wolfgang; et al. (2014). "Optical Coherence Tomography Today: Speed, Contrast, and Multimodality". Journal of Biomedical Optics. 19 (7): 071412. doi:10.1117/1.jbo.19.7.071412. PMID 25079820.
  13. ^ Kashani, AH; Chen, CL; Gahm, JK; Zheng, F; Richter, GM; Rosenfeld, PJ; Shi, Y; Wang, RK (September 2017). "Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications". Progress in Retinal and Eye Research. 60: 66–100. doi:10.1016/j.preteyeres.2017.07.002. PMC 5600872. PMID 28760677.
  14. ^ Al-Sheikh M, Akil H, Pfau M, Sadda SR (2016). "Swept-Source OCT Angiography Imaging of the Foveal Avascular Zone and Macular Capillary Network Density in Diabetic Retinopathy". Invest Ophthalmol Vis Sci. 57 (8): 3907–13. doi:10.1167/iovs.16-19570. PMID 27472076.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S (2016). "Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy". Graefes Arch Clin Exp Ophthalmol. 254 (6): 1051–8. doi:10.1007/s00417-015-3148-2. PMC 4884570. PMID 26338819.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ Wons J, Pfau M, Wirth MA, Freiberg FJ, Becker MD, Michels S (2016). "Optical Coherence Tomography Angiography of the Foveal Avascular Zone in Retinal Vein Occlusion". Ophthalmologica. 235 (4): 195–202. doi:10.1159/000445482. PMID 27160007.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^ Tang W, Guo J, Zhuang X, Zhang T, Wang L, Wang K; et al. (2021). "Wide-Field Swept-Source Optical Coherence Tomography Angiography Analysis of the Periarterial Capillary-Free Zone in Branch Retinal Vein Occlusion". Transl Vis Sci Technol. 10 (2): 9. doi:10.1167/tvst.10.2.9. PMC 7881276. PMID 34003897.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Enfield, Joey; Jonathan, Enock; Leahy, Martin (2011-04-13). "In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)". Biomedical Optics Express. 2 (5): 1184–1193. doi:10.1364/boe.2.001184. ISSN 2156-7085. PMC 3087575. PMID 21559130.
  19. ^ Barton, Jennifer K.; Stromski, Steven (2005-07-11). "Flow measurement without phase information in optical coherence tomography images". Optics Express. 13 (14): 5234–5239. doi:10.1364/OPEX.13.005234. ISSN 1094-4087. PMID 19498514.
  20. ^ Fingler, Jeff; Zawadzki, Robert J.; Werner, John S.; Schwartz, Dan; Fraser, Scott E. (2009-11-23). "Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique". Optics Express. 17 (24): 22190–22200. doi:10.1364/OE.17.022190. ISSN 1094-4087. PMC 2791341. PMID 19997465.
  21. ^ Wang, Ruikang K.; Jacques, Steven L.; Ma, Zhenhe; Hurst, Sawan; Hanson, Stephen R.; Gruber, Andras (2007-04-02). "Three dimensional optical angiography". Optics Express. 15 (7): 4083–4097. doi:10.1364/OE.15.004083. ISSN 1094-4087. PMID 19532651.
  22. ^ Jia, Yali; Tan, Ou; Tokayer, Jason; Potsaid, Benjamin; Wang, Yimin; Liu, Jonathan J.; Kraus, Martin F.; Subhash, Hrebesh; Fujimoto, James G.; Hornegger, Joachim; Huang, David (2012-02-09). "Split-spectrum amplitude-decorrelation angiography with optical coherence tomography". Optics Express. 20 (4): 4710–25. doi:10.1364/oe.20.004710. hdl:1721.1/73109. ISSN 1094-4087. PMC 3381646. PMID 22418228. S2CID 13838091.
  23. ^ Ryu G, Park D, Lim J, van Hemert J, Sagong M (2021). "Macular Microvascular Changes and Their Correlation With Peripheral Nonperfusion in Branch Retinal Vein Occlusion". Am J Ophthalmol. 225: 57–68. doi:10.1016/j.ajo.2020.12.026. PMID 33412121.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. ^ a b Jia, Y; Tan, O; Tokayer, J; Potsaid, B; Wang, Y; Liu, JJ; Kraus, MF; Subhash, H; Fujimoto, JG; Hornegger, J; Huang, D (2012). "Split-spectrum amplitude-decorrelation angiography with optical coherence tomography". Opt Express. 20 (4): 4710–25. doi:10.1364/OE.20.004710. PMC 3381646. PMID 22418228.
  25. ^ a b Koustenis A, Harris A, Gross J, et al Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research British Journal of Ophthalmology 2017;101:16-20.
  26. ^ a b Gao, Simon S.; Jia, Yali; Zhang, Miao; Su, Johnny P.; Liu, Gangjun; Hwang, Thomas S.; Bailey, Steven T.; Huang, David (2016). "Optical Coherence Tomography Angiography". Investigative Ophthalmology & Visual Science. 57 (9): OCT27–36. doi:10.1167/iovs.15-19043. ISSN 1552-5783. PMC 4968919. PMID 27409483.
  27. ^ Izatt, J.A.; Kulkami, M.D.; Yazdanfar, S.; Barton, J.K.; Welch, A.J. (1997). "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography". Opt. Lett. 22 (18): 1439–1441. doi:10.1364/ol.22.001439. PMID 18188263.
  28. ^ Chen, Z.; Milner, T.E.; Srinivas, S.; Wang, X.; Malekafzali, A.; van Gemert, M.J.C.; Nelson, J.S. (1997). "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography". Opt. Lett. 22 (14): 1119–1121. doi:10.1364/ol.22.001119. PMID 18185770.
  29. ^ a b c Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. (2017). "Optical coherence tomography angiography". Prog. Retin. Eye Res. 64: 1–55. doi:10.1016/j.preteyeres.2017.11.003. PMC 6404988. PMID 29229445.
  30. ^ Makita, S.; Hong, Y.; Yamanari, M.; Yatagai, T.; Yasuno, Y. (2006). "Optical coherence angiography". Opt. Express. 14 (17): 7821–7840. doi:10.1364/oe.14.007821. hdl:2241/108149. PMID 19529151.
  31. ^ Fingler, J.; Zawadzki, R.J.; Werner, J.S.; Schwartz, D.; Fraser, S.E. (2009). "Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique". Opt. Express. 17 (24): 22190–22200. doi:10.1364/oe.17.022190. PMC 2791341. PMID 19997465.
  32. ^ Gass, JDM; Sever, RJ; Sparks, D; Goren, J (1967). "A combined technique of fluorescein fundoscopy and angiography of the eye". Arch Ophthalmol. 78 (4): 455–461. doi:10.1001/archopht.1967.00980030457009. PMID 6046840.
  33. ^ Slakter, JS; Yannuzzi, LA; Guyer, DR; Sorenson, JA; Orlock, DA (Jun 1995). "Indocyanine-green angiography". Curr Opin Ophthalmol. 6 (3): 25–32. doi:10.1097/00055735-199506000-00005. PMID 10151085. S2CID 43888613.
  34. ^ Yannuzzi, LA; Rohrer, MA; Tindel, LJ; et al. (1986). "Fluorescein angiography complication survey". Ophthalmology. 93 (5): 611–7. doi:10.1016/s0161-6420(86)33697-2. PMID 3523356.
  35. ^ "Fluorescein Angiography".
  36. ^ Alander, Jarmo T.; Kaartinen, Ilkka; Laakso, Aki; et al. (2012). "A Review of Indocyanine Green Fluorescent Imaging in Surgery". International Journal of Biomedical Imaging. 2012: 1–26. doi:10.1155/2012/940585. PMC 3346977. PMID 22577366.
Retrieved from ""