Order-3-7 hexagonal honeycomb

From Wikipedia, the free encyclopedia
Order-3-7 hexagonal honeycomb
Hyperbolic honeycomb 6-3-7 poincare.png
Poincaré disk model
Type Regular honeycomb
Schläfli symbol {6,3,7}
Coxeter diagrams CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
Cells {6,3} Uniform tiling 63-t0.png
Faces {6}
Edge figure {7}
Vertex figure {3,7}
Dual {7,3,6}
Coxeter group [6,3,7]
Properties Regular

In the geometry of hyperbolic 3-space, the order-3-7 hexagonal honeycomb or (6,3,7 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,7}.

Geometry[]

All vertices are ultra-ideal (existing beyond the ideal boundary) with seven hexagonal tilings existing around each edge and with an order-7 triangular tiling vertex figure.

Ideal surface
H3 637 UHS plane at infinity view 1.png
Rendered intersection of honeycomb with the ideal plane in Poincaré half-space model
H3 637 UHS plane at infinity view 2.png
Closeup

Related polytopes and honeycombs[]

It a part of a sequence of regular polychora and honeycombs with hexagonal tiling cells.

{6,3,p} honeycombs
Space H3
Form Paracompact Noncompact
Name {6,3,3} {6,3,4} {6,3,5} {6,3,6} {6,3,7} {6,3,8} ... {6,3,∞}
Coxeter
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel splitplit1u.pngCDel branch4u 11.pngCDel uabc.pngCDel branch4u.pngCDel splitplit2u.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png
CDD 6-3star-infin.png
Image H3 633 FC boundary.png H3 634 FC boundary.png H3 635 FC boundary.png H3 636 FC boundary.png Hyperbolic honeycomb 6-3-7 poincare.png Hyperbolic honeycomb 6-3-8 poincare.png Hyperbolic honeycomb 6-3-i poincare.png
Vertex
figure
{3,p}
CDel node 1.pngCDel 3.pngCDel node.pngCDel p.pngCDel node.png
Tetrahedron.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Octahedron.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes.png
Icosahedron.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 63-t2.svg
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.png
Order-7 triangular tiling.svg
{3,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
H2-8-3-primal.svg
{3,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel label4.png
H2 tiling 23i-4.png
{3,∞}
CDel node 1.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png

Order-3-8 hexagonal honeycomb[]

Order-3-8 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbols {6,3,8}
{6,(3,4,3)}
Coxeter diagrams CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node h0.png = CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png
Cells {6,3} Uniform tiling 63-t0.png
Faces {6}
Edge figure {8}
Vertex figure {3,8} {(3,4,3)}
H2-8-3-primal.svgUniform tiling 433-t2.png
Dual {8,3,6}
Coxeter group [6,3,8]
[6,((3,4,3))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-3-8 hexagonal honeycomb or (6,3,8 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,8}. It has eight hexagonal tilings, {6,3}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an order-8 triangular tiling vertex arrangement.

Hyperbolic honeycomb 6-3-8 poincare.png
Poincaré disk model

It has a second construction as a uniform honeycomb, Schläfli symbol {6,(3,4,3)}, Coxeter diagram, CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png, with alternating types or colors of tetrahedral cells. In Coxeter notation the half symmetry is [6,3,8,1+] = [6,((3,4,3))].

Order-3-infinite hexagonal honeycomb[]

Order-3-infinite hexagonal honeycomb
Type Regular honeycomb
Schläfli symbols {6,3,∞}
{6,(3,∞,3)}
Coxeter diagrams CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node h0.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png
CDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel infin.pngCDel node.pngCDD 6-3star-infin.png
Cells {6,3} Uniform tiling 63-t0.png
Faces {6}
Edge figure {∞}
Vertex figure {3,∞}, {(3,∞,3)}
H2 tiling 23i-4.pngH2 tiling 33i-4.png
Dual {∞,3,6}
Coxeter group [6,3,∞]
[6,((3,∞,3))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-3-infinite hexagonal honeycomb or (6,3,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,∞}. It has infinitely many hexagonal tiling {6,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an infinite-order triangular tiling vertex arrangement.

Hyperbolic honeycomb 6-3-i poincare.png
Poincaré disk model
H3 63i UHS plane at infinity.png
Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {6,(3,∞,3)}, Coxeter diagram, CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png, with alternating types or colors of hexagonal tiling cells.

See also[]

  • Convex uniform honeycombs in hyperbolic space
  • List of regular polytopes
  • Infinite-order dodecahedral honeycomb

References[]

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)

External links[]

Retrieved from ""