Ordinal analysis

From Wikipedia, the free encyclopedia

In proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory.

History[]

The field of ordinal analysis was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that the proof-theoretic ordinal of Peano arithmetic is ε0. See Gentzen's consistency proof.

Definition[]

Ordinal analysis concerns true, effective (recursive) theories that can interpret a sufficient portion of arithmetic to make statements about ordinal notations.

The proof-theoretic ordinal of such a theory is the smallest ordinal (necessarily recursive, see next section) that the theory cannot prove is well founded—the supremum of all ordinals for which there exists a notation in Kleene's sense such that proves that is an ordinal notation. Equivalently, it is the supremum of all ordinals such that there exists a recursive relation on (the set of natural numbers) that well-orders it with ordinal and such that proves transfinite induction of arithmetical statements for .

Upper bound[]

The existence of a recursive ordinal that the theory fails to prove is well-ordered follows from the bounding theorem, as the set of natural numbers that an effective theory proves to be ordinal notations is a set (see Hyperarithmetical theory). Thus the proof-theoretic ordinal of a theory will always be a (countable) recursive ordinal, that is, less than the Church–Kleene ordinal .

Examples[]

Theories with proof-theoretic ordinal ω[]

  • Q, Robinson arithmetic (although the definition of the proof-theoretic ordinal for such weak theories has to be tweaked).
  • PA, the first-order theory of the nonnegative part of a discretely ordered ring.

Theories with proof-theoretic ordinal ω2[]

  • RFA, rudimentary function arithmetic.[1]
  • 0, arithmetic with induction on Δ0-predicates without any axiom asserting that exponentiation is total.

Theories with proof-theoretic ordinal ω3[]

Friedman's grand conjecture suggests that much "ordinary" mathematics can be proved in weak systems having this as their proof-theoretic ordinal.

Theories with proof-theoretic ordinal ωn (for n = 2, 3, ... ω)[]

  • 0 or EFA augmented by an axiom ensuring that each element of the n-th level of the Grzegorczyk hierarchy is total.

Theories with proof-theoretic ordinal ωω[]

Theories with proof-theoretic ordinal ε0[]

  • PA, Peano arithmetic (shown by Gentzen using cut elimination).
  • ACA0, arithmetical comprehension.

Theories with proof-theoretic ordinal the Feferman–Schütte ordinal Γ0[]

This ordinal is sometimes considered to be the upper limit for "predicative" theories.

Theories with proof-theoretic ordinal the Bachmann–Howard ordinal[]

The Kripke-Platek or CZF set theories are weak set theories without axioms for the full powerset given as set of all subsets. Instead, they tend to either have axioms of restricted separation and formation of new sets, or they grant existence of certain function spaces (exponentiation) instead of carving them out from bigger relations.

Theories with larger proof-theoretic ordinals[]

  • , Π11 comprehension has a rather large proof-theoretic ordinal, which was described by Takeuti in terms of "ordinal diagrams", and which is bounded by ψ0ω) in Buchholz's notation. It is also the ordinal of , the theory of finitely iterated inductive definitions. And also the ordinal of MLW, Martin-Löf type theory with indexed W-Types Setzer (2004).
  • IDω, the theory of ω-iterated inductive definitions. It's proof-theoretic ordinal is equal to the Takeuti-Feferman-Buchholz ordinal.
  • T0, Feferman's constructive system of explicit mathematics has a larger proof-theoretic ordinal, which is also the proof-theoretic ordinal of the KPi, Kripke–Platek set theory with iterated admissibles and .
  • KPi, an extension of Kripke–Platek set theory based on an inaccessible cardinal, has a very large proof-theoretic ordinal , where I is the smallest inaccessible, using an unknown function. Dubbed "Madore's ordinal", after David Madore. This ordinal is also the proof-theoretic ordinal of .
  • KPM, an extension of Kripke–Platek set theory based on a Mahlo cardinal, has a very large proof-theoretic ordinal ϑ, which was described by Rathjen (1990), and dubbed the "Small Rathjen Ordinal".
  • has a proof-theoretic ordinal equal to , where refers to the first weakly compact, using Rathjen's Psi function, dubbed the "Large Rathjen Ordinal"
  • has a proof-theoretic ordinal equal to , where refers to the first -indescribable and = (; ; , , 0), using Stegert's Psi function, dubbed the "Small Stegert Ordinal"
  • MLM, an extension of Martin-Löf type theory by one Mahlo-universe, has an even larger proof-theoretic ordinal ψΩ1M + ω).

Most theories capable of describing the power set of the natural numbers have proof-theoretic ordinals that are so large that no explicit combinatorial description has yet been given. This includes second-order arithmetic and set theories with powersets including ZF and ZFC (as of 2019). The strength of intuitionistic ZF (IZF) equals that of ZF.

Table of ordinal analyses[]

Table of proof-theoretic ordinals
Ordinal First-order arithmetic Second-order arithmetic Kripke-Platek set theory Type theory Constructive set theory Explicit mathematics
,
,
, ,
[1] ,
, ,
, ,
,
[2]
, , ,
[3] ,
[4]
,
[5]
[6]
,
[7]
[8] ,
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

Key[]

This is a list of symbols used in this table:

  • ψ represents Buchholz's psi unless stated otherwise.
  • Ψ represents either Rathjen's or Stegert's Psi.
  • φ represents Veblen's function.
  • ω represents the first transfinite ordinal.
  • εα represents the epsilon numbers.
  • Γα represents the gamma numbers (Γ0 is the Feferman–Schütte ordinal)
  • Ωα represent the uncountable ordinals (Ω1, abbreviated Ω, is ω1).

This is a list of the abbreviations used in this table:

  • First-order arithmetic
    • is Robinson arithmetic
    • is the first-order theory of the nonnegative part of a discretely ordered ring.
    • is rudimentary function arithmetic.
    • is arithmetic with induction on Δ0-predicates without any axiom asserting that exponentiation is total.
    • is elementary function arithmetic.
    • is arithmetic with induction on Δ0-predicates augmented by an axiom asserting that exponentiation is total.
    • is elementary function arithmetic augmented by an axiom ensuring that each element of the n-th level of the Grzegorczyk hierarchy is total.
    • is augmented by an axiom ensuring that each element of the n-th level of the Grzegorczyk hierarchy is total.
    • is primitive recursive arithmetic.
    • is arithmetic with induction on Σ1-predicates.
    • is Peano arithmetic.
    • is but with induction only for positive formulas.
    • extends PA by ν iterated fixed points of monotone operators.
    • is not exactly a first-order arithmetic system, but captures what one can get by predicative reasoning based on the natural numbers.
    • is an automorphism on .
    • extends PA by ν iterated least fixed points of monotone operators.
    • is not exactly a first-order arithmetic system, but captures what one can get by predicative reasoning based on ν-times iterated generalized inductive definitions.
    • is an automorphism on .
    • is a weakened version of based on W-types.
  • Second-order arithmetic
    • is a second order form of sometimes used in reverse mathematics.
    • is a second order form of sometimes used in reverse mathematics.
    • is recursive comprehension.
    • is weak König's lemma.
    • is arithmetical comprehension.
    • is plus the full second-order induction scheme.
    • is arithmetical transfinite recursion.
    • is plus the full second-order induction scheme.
    • is plus the assertion "every true -sentence with parameters holds in a -model of ".
  • Kripke-Platek set theory
    • is Kripke-Platek set theory with the axiom of infinity.
    • is Kripke-Platek set theory, whose universe is an admissible set containing .
    • is a weakened version of based on W-types.
    • asserts that the universe is a limit of admissible sets.
    • is a weakened version of based on W-types.
    • asserts that the universe is inaccessible sets.
    • asserts that the universe is hyperinaccessible: an inaccessible set and a limit of inaccessible sets.
    • asserts that the universe is a Mahlo set.
    • is augmented by a certain first-order reflection scheme.
    • is KPi augmented by the axiom .
    • is KPI augmented by the assertion "at least one recursively Mahlo ordinal exists".

A superscript zero indidcates that -induction is removed (making the theory significantly weaker).

  • Type theory
    • is the Herbelin-Patey Calculus of Primitive Recursive Constructions.
    • is type theory without W-types and with universes.
    • is type theory without W-types and with finitely many universes.
    • is type theory with a next universe operator.
    • is type theory without W-types and with a superuniverse.
    • is an automorphism on type theory without W-types.
    • is type theory with one universe and Aczel’s type of iterative sets.
    • is type theory with indexed W-Types.
    • is type theory with W-types and one universe.
    • is type theory with W-types and finitely many universes.
    • is an automorphism on type theory with W-types.
    • is type theory with a Mahlo universe.
  • Constructive set theory
    • is Aczel’s constructive set theory.
    • is plus the regular extension axiom.
    • is plus the full-second order induction scheme.
    • is with a Mahlo universe.
  • Explicit mathematics
    • is basic explicit mathematics plus elementary comprehension
    • is plus join rule
    • is plus join axioms
    • is a weak variant of the Feferman's .
    • is , where is inductive generation.
    • is , where is the full second-order induction scheme.

See also[]

References[]

  • Buchholz, W.; Feferman, S.; Pohlers, W.; Sieg, W. (1981), Iterated inductive definitions and sub-systems of analysis, Lecture Notes in Math., 897, Berlin: Springer-Verlag, doi:10.1007/BFb0091894, ISBN 978-3-540-11170-2
  • Pohlers, Wolfram (1989), Proof theory, Lecture Notes in Mathematics, 1407, Berlin: Springer-Verlag, doi:10.1007/978-3-540-46825-7, ISBN 3-540-51842-8, MR 1026933
  • Pohlers, Wolfram (1998), "Set Theory and Second Order Number Theory", Handbook of Proof Theory, Studies in Logic and the Foundations of Mathematics, 137, Amsterdam: Elsevier Science B. V., pp. 210–335, doi:10.1016/S0049-237X(98)80019-0, ISBN 0-444-89840-9, MR 1640328
  • Rathjen, Michael (1990), "Ordinal notations based on a weakly Mahlo cardinal.", Arch. Math. Logic, 29 (4): 249–263, doi:10.1007/BF01651328, MR 1062729
  • Rathjen, Michael (2006), "The art of ordinal analysis" (PDF), International Congress of Mathematicians, II, Zürich: Eur. Math. Soc., pp. 45–69, MR 2275588, archived from the original on 2009-12-22CS1 maint: bot: original URL status unknown (link)
  • Rose, H.E. (1984), Subrecursion. Functions and Hierarchies, Oxford logic guides, 9, Oxford, New York: Clarendon Press, Oxford University Press
  • Schütte, Kurt (1977), Proof theory, Grundlehren der Mathematischen Wissenschaften, 225, Berlin-New York: Springer-Verlag, pp. xii+299, ISBN 3-540-07911-4, MR 0505313
  • Setzer, Anton (2004), "Proof theory of Martin-Löf type theory. An Overview", Mathématiques et Sciences Humaines. Mathematics and Social Sciences (165): 59–99
  • Takeuti, Gaisi (1987), Proof theory, Studies in Logic and the Foundations of Mathematics, 81 (Second ed.), Amsterdam: North-Holland Publishing Co., ISBN 0-444-87943-9, MR 0882549
  1. ^ Krajicek, Jan (1995). Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge University Press. pp. 18–20. ISBN 9780521452052. defines the rudimentary sets and rudimentary functions, and proves them equivalent to the Δ0-predicates on the naturals. An ordinal analysis of the system can be found in Rose, H. E. (1984). Subrecursion: functions and hierarchies. University of Michigan: Clarendon Press. ISBN 9780198531890.

Notes[]

1.^ For
2.^ The Veblen function with countably infinitely iterated least fixed points.
3.^ Can also be commonly written as in Madore's ψ.
4.^ Uses Madore's ψ rather than Buchholz's ψ.
5.^ Can also be commonly written as in Madore's ψ.
6.^ represents the first recursively weakly compact ordinal. Uses Arai's ψ rather than Buchholz's ψ.
7.^ Also the proof-thetoretic ordinal of , as the amount of weakening given by the W-types is not enough.
8.^ represents the first inaccessible cardinal. Uses Jäger's ψ rather than Buchholz's ψ.
9.^ represents the limit of the -inaccessible cardinals. Uses (presumably) Jäger's ψ.
10.^ represents the limit of the -inaccessible cardinals. Uses (presumably) Jäger's ψ.
11.^ represents the first Mahlo cardinal. Uses Rathjen's ψ rather than Buchholz's ψ.
12.^ represents the first weakly compact cardinal. Uses Rathjen's Ψ rather than Buchholz's ψ.
13.^ represents the first -indescribable cardinal. Uses Stegert's Ψ rather than Buchholz's ψ.
14.^ is the smallest such that ' is -indescribable') and ' is -indescribable '). Uses Stegert's Ψ rather than Buchholz's ψ.
15.^ represents the first Mahlo cardinal. Uses (presumably) Rathjen's ψ.
Retrieved from ""