Oxaphosphetane

From Wikipedia, the free encyclopedia
Oxaphosphetane
1,2-Oxaphosphetane.png
1,2-Oxaphosphetane
1,3-Oxaphosphetane.png
1,3-Oxaphosphetane
1,2-oxaphosphetane-based-on-xtal-LIGREB-3D-bs-17.png
Ball-and-stick model of 1,2-oxaphosphetane
1,3-oxaphosphetane-inspired-by-xtal-LIGREB-3D-bs-17.png
Ball-and-stick model of 1,3-oxaphosphetane
Names
Other names
1,2-Oxaphosphetane
1,3-Oxaphosphetane
Identifiers
  • 1,2: 287-36-5 checkY
  • 1,3: 25885-35-2 checkY
3D model (JSmol)
ChemSpider
  • 1,2: InChI=1S/C2H5OP/c1-2-4-3-1/h4H,1-2H2
    Key: JONKIUBSNSUGGZ-UHFFFAOYSA-N
  • 1,3: InChI=1S/C2H5OP/c1-3-2-4-1/h4H,1-2H2
    Key: XIEBRVIWJYCCCK-UHFFFAOYSA-N
  • 1,2: C1CPO1
  • 1,3: C1OCP1
Properties
C2H5OP
Molar mass 76.035 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Stick model of a 1,2-oxaphosphetane that has been isolated and characterised by X-ray crystallography.[1]

An oxaphosphetane is a molecule containing a four-membered ring with one phosphorus, one oxygen and two carbon atoms. In a 1,2-oxaphosphetane phosphorus is bonded directly to oxygen, whereas a 1,3-oxaphosphetane has the phosphorus and oxygen atoms at opposite corners.

1,2-Oxaphosphetanes are rarely isolated but are important intermediates in the Wittig reaction and related reactions such as the Seyferth–Gilbert homologation and the Horner–Wadsworth–Emmons reaction.[2] Edwin Vedejs's NMR studies first revealed the importance of oxaphosphetanes in the mechanism of the Wittig reaction in the 1970s.[3][4]

References[]

  1. ^ M. Hamaguchi, Y. Iyamaa, E. Mochizukia, T. Oshima (2005). "First isolation and characterization of 1,2-oxaphosphetanes with three phenyl groups at the phosphorus atom in typical Wittig reaction using cyclopropylidenetriphenylphosphorane". Tetrahedron Lett. 46 (51): 8949–8952. doi:10.1016/j.tetlet.2005.10.086.CS1 maint: uses authors parameter (link)
  2. ^ Byrne, Peter A.; Gilheany, Declan G. (2013). "The modern interpretation of the Wittig reaction mechanism". Chem. Soc. Rev. 42 (16): 6670–6696. doi:10.1039/C3CS60105F. hdl:10197/4939. PMID 23673458.
  3. ^ Vedejs E (30 July 2004). "Studies in Heteroelement-Based Synthesis". J. Org. Chem. 69 (16): 5159–5167. doi:10.1021/jo049360l. PMID 15287757.
  4. ^ "Memorial Resolution of the Faculty of the University of Wisconsin-Madison" (PDF). University of Wisconsin-Madison. Archived from the original (PDF) on 9 May 2020. Retrieved 9 May 2020.
Retrieved from ""