Paul Pellas-Graham Ryder Award

From Wikipedia, the free encyclopedia
Paul Pellas-Graham Ryder Award
Awarded forBest planetary science paper of previous year by an undergraduate or graduate student.
Sponsored byMeteoritical Society and Planetary Geology Division of the Geological Society of America
First awarded2002

The Paul Pellas-Graham Ryder Award is jointly sponsored by the Meteoritical Society and the Planetary Geology Division of the Geological Society of America.[1] It recognizes the best planetary science paper, published during the previous year in a peer-reviewed scientific journal, and written by an undergraduate or graduate student (as first author). The topics covered by the award are listed on the cover of Meteoritics and Planetary Science. It has been given since 2002, and honors the memories of the incomparable meteoriticist [2] and lunar scientist Graham Ryder.

There have been 21 recipients of the award since its inception in 2002. The recipient's journal articles awarded have collectively been cited more than 2100 times as of December 31, 2019.

Paul Pellas-Graham Ryder Award Winners[]

Sources: Meteoritical Society, GSA Planetary Geology Division

Paul Pellas-Graham Ryder Award Winners[3]
Paper published Year awarded Name Institution General Topic
2000[4] 2002 Washington University Venus
2001[5] 2003 Uppsala University Comets
2002[6] 2004 University of Lorraine Solar Nebula (Isotopes)
2003[7] 2005 Tokyo Institute of Technology Chondrules
2004[8] 2006 University of Texas, San Antonio Mars
2005[9] & 2006[10] 2007* and University of Arizona and University of Lorraine Asteroids and Solar Nebula
2007[11] 2008 ETH Zurich Moon
2008[12] 2009 Bethany L. Ehlmann Brown University Mars
2009[13] 2010 University of North Dakota K-T Impact
2010[14] 2011 University of Tennessee Breccias
2011[15] 2012 University of Idaho Enceladus
2012[16] 2013 ETH Zurich Solar Nebula (Isotopes)
2013[17] 2014 Braunschweig University of Technology Chondrules
2014[18] 2015 University of Illinois at Urbana-Champaign Io (moon)
2015[19][20] 2016** and Tanya Harrison University of Texas, Austin and University of Western Ontario Murchison meteorite and Mars
2016[21][22] 2017** and University of Münster and University of Arizona Chondrules and Pluto
2017[23] 2018 University of Maryland iron meteorites
2018[24] 2019 Harvard University Moon
2019[25] 2020 Imperial College London Asteroids
2020[26] 2021 University of Münster carbonaceous chondrites

*Timing of award adjusted by presenting two in the same year.

**Jointly awarded to two recipients in the same year.

See also[]

References[]

  1. ^ "Awards". Meteoritical Society. Retrieved 21 December 2014.
  2. ^ Link to Paul Pellas french Wikipédia page (in French).
  3. ^ "GSA Planetary Geology Division - Awards". geosociety.org. Retrieved 2015-12-02.
  4. ^ Johnson, Natasha M.; Fegley Jr., Bruce (2000-07-01). "Water on Venus: New Insights from Tremolite Decomposition". Icarus. 146 (1): 301–306. Bibcode:2000Icar..146..301J. doi:10.1006/icar.2000.6392.
  5. ^ Davidsson, Björn J. R. (2001-02-01). "Tidal Splitting and Rotational Breakup of Solid Biaxial Ellipsoids". Icarus. 149 (2): 375–383. Bibcode:2001Icar..149..375D. doi:10.1006/icar.2000.6540.
  6. ^ Dauphas, N.; Marty, B.; Reisberg, L. (2002-01-20). "Molybdenum Evidence for Inherited Planetary Scale Isotope Heterogeneity of the Protosolar Nebula". The Astrophysical Journal. 565 (1): 640–644. arXiv:astro-ph/0109549. Bibcode:2002ApJ...565..640D. doi:10.1086/324597. ISSN 0004-637X. S2CID 9113548.
  7. ^ (PDF) http://www.ep.sci.hokudai.ac.jp/~yuri/paper/ItohYuri_nature_all.pdf. {{cite web}}: Missing or empty |title= (help)
  8. ^ Wyrick, Danielle; Ferrill, David A.; Morris, Alan P.; Colton, Shannon L.; Sims, Darrell W. (2004-06-01). "Distribution, morphology, and origins of Martian pit crater chains". Journal of Geophysical Research: Planets. 109 (E6): E06005. Bibcode:2004JGRE..109.6005W. doi:10.1029/2004JE002240. ISSN 2156-2202.
  9. ^ Richardson Jr., James E.; Melosh, H. Jay; Greenberg, Richard J.; O'Brien, David P. (2005-12-15). "The global effects of impact-induced seismic activity on fractured asteroid surface morphology". Icarus. 179 (2): 325–349. Bibcode:2005Icar..179..325R. doi:10.1016/j.icarus.2005.07.005.
  10. ^ Toppani, Alice; Libourel, Guy; Robert, François; Ghanbaja, Jaafar (2006-10-01). "Laboratory condensation of refractory dust in protosolar and circumstellar conditions". Geochimica et Cosmochimica Acta. 70 (19): 5035–5060. Bibcode:2006GeCoA..70.5035T. doi:10.1016/j.gca.2006.05.020.
  11. ^ Touboul, M.; Kleine, T.; Bourdon, B.; Palme, H.; Wieler, R. (2007-12-20). "Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals". Nature. 450 (7173): 1206–1209. Bibcode:2007Natur.450.1206T. doi:10.1038/nature06428. ISSN 0028-0836. PMID 18097403. S2CID 4416259.
  12. ^ Ehlmann, Bethany L.; Mustard, John F.; Murchie, Scott L.; Poulet, Francois; Bishop, Janice L.; Brown, Adrian J.; Calvin, Wendy M.; Clark, Roger N.; Marais, David J. Des (2008-12-19). "Orbital Identification of Carbonate-Bearing Rocks on Mars". Science. 322 (5909): 1828–1832. Bibcode:2008Sci...322.1828E. doi:10.1126/science.1164759. ISSN 0036-8075. PMID 19095939.
  13. ^ Reddy, Vishnu; Carvano, Jorge M.; Lazzaro, Daniela; Michtchenko, Tatiana A.; Gaffey, Michael J.; Kelley, Michael S.; Thais Mothé Diniz; Alvaro Alvarez Candal; Moskovitz, Nicholas A.; Cloutis, Edward A.; Ryan, Erin L. (2011). "Mineralogical Characterization of Baptistina Asteroid Family: Implications for K/T Impactor Source". Icarus. 216 (216): 184–97. arXiv:1110.3414. Bibcode:2011Icar..216..184R. doi:10.1016/j.icarus.2011.08.027. S2CID 118377061.
  14. ^ Beck, Andrew W.; McSWEEN Jr., Harry Y. (2010-05-01). "Diogenites as polymict breccias composed of orthopyroxenite and harzburgite". Meteoritics & Planetary Science. 45 (5): 850–872. Bibcode:2010M&PS...45..850B. doi:10.1111/j.1945-5100.2010.01061.x. ISSN 1945-5100.
  15. ^ Patthoff, D. Alex; Kattenhorn, Simon A. (2011-09-28). "A fracture history on Enceladus provides evidence for a global ocean". Geophysical Research Letters. 38 (18): L18201. Bibcode:2011GeoRL..3818201P. doi:10.1029/2011GL048387. ISSN 1944-8007.
  16. ^ Burkhardt, Christoph; Kleine, Thorsten; Dauphas, Nicolas; Wieler, Rainer (2012-12-01). "Origin of isotopic heterogeneity in the solar nebula by thermal processing and mixing of nebular dust". Earth and Planetary Science Letters. 357–358: 298–307. Bibcode:2012E&PSL.357..298B. doi:10.1016/j.epsl.2012.09.048.
  17. ^ Beitz, E.; Güttler, C.; Nakamura, A. M.; Tsuchiyama, A.; Blum, J. (2013-07-01). "Experiments on the consolidation of chondrites and the formation of dense rims around chondrules". Icarus. 225 (1): 558–569. Bibcode:2013Icar..225..558B. doi:10.1016/j.icarus.2013.04.028.
  18. ^ Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W. (2014-06-01). "Io's theothermal (sulfur) – Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply". Icarus. 235: 123–129. Bibcode:2014Icar..235..123B. doi:10.1016/j.icarus.2014.03.019.
  19. ^ Hanna, Romy D.; Ketcham, Richard A.; Zolensky, Mike; Behr, Whitney M. (2015). "Impact-induced brittle deformation, porosity loss, and aqueous alteration in the Murchison CM chondrite". Geochimica et Cosmochimica Acta. 171: 256–282. Bibcode:2015GeCoA.171..256H. doi:10.1016/j.gca.2015.09.005.
  20. ^ Harrison, Tanya N.; Osinski, Gordon R.; Tornabene, Livio L.; Jones, Eriita (2015-05-15). "Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation". Icarus. 252: 236–254. Bibcode:2015Icar..252..236H. doi:10.1016/j.icarus.2015.01.022.
  21. ^ Budde, Gerrit; Kleine, Thorsten; Kruijer, Thomas S.; Burkhardt, Christoph; Metzier, Knut (2016-01-28). "Tungsten isotopic constraints on the age and origin of chondrules". Proceedings of the National Academy of Sciences of the United States of America. 113 (11): 2886–2891. Bibcode:2016PNAS..113.2886B. doi:10.1073/pnas.1524980113. PMC 4801301. PMID 26929340.
  22. ^ Keane, James T.; Matsuyama, Isamu; Kamata, Shunichi; Steckloff, Jordan K. (2016-12-01). "Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia". Nature. 540 (7631): 90–93. Bibcode:2016Natur.540...90K. doi:10.1038/nature20120. PMID 27851731. S2CID 4468636.
  23. ^ Worsham, Emily A.; Bermingham, Katherine R.; Walker, Richard J. (2017-06-01). "Characterizing cosmochemical materials with genetic affinities to the Earth: Genetic and chronological diversity within the IAB iron meteorite complex". Earth and Planetary Science Letters. 467: 157–166. Bibcode:2017E&PSL.467..157W. doi:10.1016/j.epsl.2017.02.044. PMC 6352993. PMID 30713346.
  24. ^ Lock, Simon J.; Stewart, Sarah T.; Petaev, Michail I.; Leinhardt, Zoe (2018-02-28). "The Origin of the Moon Within a Terrestrial Synestia". Journal of Geophysical Research: Planets. 123 (4): 910–951. arXiv:1802.10223. Bibcode:2018JGRE..123..910L. doi:10.1002/2017JE005333. S2CID 119184520.
  25. ^ Raducan, Sabina D.; Davison, T. M.; Luther, R.; Collins, G. S. (2019-09-01). "The role of asteroid strength, porosity and internal friction in impact momentum transfer". Icarus. 123 (4): 282–295. doi:10.1002/2017JE005333. hdl:1983/5786532b-f70f-4c16-b966-927046d4eccc. S2CID 119184520.
  26. ^ Hellmann, Jann; Hopp, Timo; Burkhardt, Christoph; Kleine, Thorsten (2020-11-01). "Origin of volatile element depletion among carbonaceous chondrites". Earth and Planetary Science Letters. 549: 116508. Bibcode:2020E&PSL.54916508H. doi:10.1016/j.epsl.2020.116508. S2CID 224872003.
Retrieved from ""