Pine siskin

From Wikipedia, the free encyclopedia

Pine siskin
Carduelis pinus CT7.jpg

Least Concern (IUCN 3.1)[1]
Scientific classification edit
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Order: Passeriformes
Family: Fringillidae
Subfamily: Carduelinae
Genus: Spinus
Species:
S. pinus
Binomial name
Spinus pinus
(Wilson, 1810)
Spinus pinus map.svg
Geographical distribution of Pine siskin. A small portion in western Guatemala is not shown.
  Breeding
  Year-round
  Nonbreeding
  Nonbreeding (scarce)
Synonyms

Fringilla pinus (protonym)
Carduelis pinus

The pine siskin (Spinus pinus) is a North American bird in the finch family. It is a migratory bird with an extremely sporadic winter range.

Taxonomy[]

The pine siskin was formally described in 1810 by the American ornithologist Alexander Wilson under the binomial name Fringilla pinus.[2] The specific epithet pinus is the Latin word for a "pine-tree".[3] The type locality is Philadelphia, Pennsylvania.[4] The pine siskin is now placed in the genus Spinus that was introduced in 1816 by the German naturalist Carl Ludwig Koch in 1816.[5][6]

Three subspecies are recognised:[6]

  • S. p. pinus (Wilson, A, 1810) – Alaska, Canada and west, northeast USA
  • S. p. macropterus (Bonaparte, 1850) – northwest and central Mexico
  • S. p. perplexus Van Rossem, 1938 – south Mexico to Guatemala

Description[]

These birds are fairly small, being around the same size as the widespread American goldfinch. In both sexes, total length can range from 11–14 cm (4.3–5.5 in), with a wingspan of 18–22 cm (7.1–8.7 in) and weight of 12–18 g (0.42–0.63 oz).[7]

Adults are brown on the upperparts and pale on the underparts, with heavy streaking throughout. They have short forked tails. Their bills are conical like most finches but are more elongated and slender than those of other co-occurring finches. Variably, pine siskins have yellow patches on their wings and tails, which may also consist of white streaks on the wings. Although they can be confused by the more inexperienced for other finches or even American sparrows, pine siskins are distinguished by their heavy streaking, relatively slender bills, notched tail, yellow or whitish patches on the wings and smallish size.

Separation from the Eurasian siskin[]

The pine siskin in its typical morph is a drab bird, whereas the Eurasian siskin (a bird the species does not naturally co-exist with), in many plumages, is much brighter. Adult male Eurasian siskins are bright green and yellow with a black cap, and an unstreaked throat and breast; the pine siskin does not have a corresponding bright plumage. Adult female Eurasian siskins also usually have green and yellow plumage tones: for example, yellow in the supercilium and on the sides of the breast, green tones in the mantle and yellow in the rump. Adult pine siskins of the typical morph do not have green and yellow tones, although juveniles can have a yellowish-buff wash on their underparts and buff-toned wingbars, for a short period prior to their autumn migration. The ground colour of the underparts of the Eurasian siskin is normally pure white, whereas on the pine siskin it is usually a dirtier colour. In female and juvenile Eurasian siskins, the centre of the belly and lower breast are often largely or entirely unstreaked, whereas in most pine siskins the streaking extends across the whole of the underparts. The wingbars of the Eurasian siskin are broad and yellow (with the tips white) whereas they are normally narrower and buffish white in the pine siskin, contrasting with the bright yellow flash at the base of the primaries. Pine siskins have a longer bill, usually with a straight culmen, compare with a short bill in Eurasian siskins, with a decurved culmen. There is a green morph of the pine siskin, closer in appearance to the Eurasian siskin; these birds make up only 1% of the population. These are closer in appearance to female Eurasian siskins, but differ in that they have a yellow wash on the undertail-coverts (white on the Eurasian siskin), no yellow in the supercilium, reduced underparts streaking, and much yellow at the base of the tail and remiges; there may also be a difference in the extent of yellow in the underparts, but this needs further study.[8]

Distribution and habitat[]

Their breeding range spreads across almost the entirety of Canada, Alaska and, to a more variable degree, across the western mountains and northern parts of the United States. As their name indicates, the species occurs mostly as a breeder in open conifer forests. Northern pine forests supports the majority of the species breeding population. However, stands of ornamental conifers or deciduous trees may support nesting birds in partially developed parks, cemeteries, and suburban woodlands. While they favor feeding in open forest canopies where cone seeds are abundant, they'll forage in habitats as diverse as deciduous forests and thickets, meadows, grasslands, weedy fields, roadsides, chaparral, and backyard gardens and lawns. They flock to backyard feeders offering small seeds. Mineral deposits can lure them to otherwise unattractive habitats like winter road beds that are salted to melt snow and ice. The nest is well-hidden on a horizontal branch of a tree, often a conifer.[7]

Migration by this bird is highly variable, probably related to food supply. Large numbers may move south in some years; hardly any in others. This species is one of a few species that are considered "irruptive winter finches" because of the high variability of their movements based on the success of crops from year to year.

Behavior and ecology[]

Feeding[]

Pine siskins feeding on thistle seeds

These birds forage in trees, shrubs and weeds. They mainly eat seeds, plant parts and some insects. In winter, they often feed in mixed flocks including American goldfinches and redpolls. Small seeds, especially thistle, red alder, birch, and spruce seeds, make up the majority of the pine siskin's diet. In a part of their esophagus called the crop, the species can store up to 10% of their body weight in seeds overnight, providing extra food on cold days.[7] They will alternately eat the young buds of willows, elms and maples, and the soft stems and leaves of weeds and even young garden vegetables. They'll glean the seeds of grass, dandelions, chickweed, sunflowers and ragweed. Bird feeders often attract pine siskins, where they may eat fragments of heavy-shelled seeds, such as black oil sunflowers, left behind by heavier-billed bird species. In summer, they will eat many insects, especially aphids, as well as a few spiders and grubs, which they then feed to the young as a protein-rich food that contributes to their growth. By the time of winter, even first year siskins predominately eat seeds.[7]

Pine siskins can survive in very cold temperatures. The metabolic rates of this species are typically 40% higher than a "normal" songbird of their size. When temperatures plunge as low as −70 °C (−94 °F), they can accelerate that rate up to five times normal for several hours. They also put on half again as much winter fat as their common redpoll and American goldfinch relatives. They also can protect their young from cold as well. Nests are often heavily insulated with thick plant materials and females may literally never cease incubating their eggs and hatchlings, while being fed by their male mate.[7]

Conservation status[]

Although considered Washington's most common finch, the pine siskin has suffered a significant annual decline in population since 1966, according to the Breeding Bird Survey. Due to the irruptive nature of this species, populations vary widely from year to year, and trends can be difficult to interpret. Parasitism by brown-headed cowbirds can have a significant impact on pine siskin productivity, and forest fragmentation has increased their contact with cowbirds. Maintaining large tracts of coniferous forest will help keep this bird common.

References[]

  1. ^ BirdLife International (2016). "Spinus pinus". IUCN Red List of Threatened Species. 2016: e.T22720359A94666039. doi:10.2305/IUCN.UK.2016-3.RLTS.T22720359A94666039.en. Retrieved 12 November 2021.
  2. ^ Wilson, Alexander (1810). American Ornithology; or, the Natural History of the Birds of the United States: Illustrated with Plates Engraved and Colored from Original drawings taken from Nature. Volume 2. Philadelphia: Bradford and Inskeep. pp. 133–134, Plate 17 fig. 1. |volume= has extra text (help)
  3. ^ Jobling, James A. (2010). The Helm Dictionary of Scientific Bird Names. London: Christopher Helm. p. 307. ISBN 978-1-4081-2501-4.
  4. ^ Paynter, Raymond A. Jr, ed. (1968). Check-List of Birds of the World. Volume 14. Cambridge, Massachusetts: Museum of Comparative Zoology. p. 239. |volume= has extra text (help)
  5. ^ Koch, Carl Ludwig (1816). System der baierischen Zoologie, Volume 1 (in German). Nürnberg. p. 232.
  6. ^ a b Gill, Frank; Donsker, David; Rasmussen, Pamela, eds. (2020). "Finches, euphonias". IOC World Bird List Version 10.2. International Ornithologists' Union. Retrieved 13 October 2020.
  7. ^ a b c d e All About Birds Cornell Lab of Ornithology. Retrieved 29 May 2011.
  8. ^ Lethaby(1997) - reference relates to whole paragraph

Further reading[]

Book[]

  • Dawson, W. R. 1997. Pine Siskin (Carduelis pinus). In The Birds of North America, No. 280 (A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia, PA, and The American Ornithologists’ Union, Washington, D.C.

Articles[]

Identification[]

Behaviour[]

  • Astheimer, L; Ramenofsky, M; Wingfield, JC; Buttemer, W (1989). "Corticosterone Feeding Behavior and Food Deprivation in Passerine Birds". American Zoologist. 29 (4): 1–195A. doi:10.1093/icb/29.4.1. JSTOR 3883539.
  • Astheimer, LB; Buttemer, WA; Wingfield, JC (1992). "Interactions of corticosterone with feeding, activity and metabolism in passerine birds". Ornis Scandinavica. 23 (3): 355–365. doi:10.2307/3676661. JSTOR 3676661.
  • Balph, DF; Balph, MH (1979). "Behavioral Flexibility of Pine Siskins in Mixed Species Foraging Groups". Condor. 81 (2): 211–212. doi:10.2307/1367295. JSTOR 1367295.
  • Benkman, CW; Lindholm, AK (1991). "The Advantages and Evolution of a Morphological Novelty". Nature. 349 (6309): 519–520. Bibcode:1991Natur.349..519B. doi:10.1038/349519a0. S2CID 4369360.
  • Bennetts, RE; Hutto, RL (1985). "Attraction of Social Fringillids to Mineral Salts an Experimental Study". Journal of Field Ornithology. 56 (2): 187–189.
  • Bledsoe, AH (1988). "Nuclear DNA Evolution and Phylogeny of the New World Nine-Primaried Oscines". Auk. 105 (3): 504–515. doi:10.1093/auk/105.3.504.
  • Brogden, KA; Packer, RA (1979). "Comparison of Pasteurella-Multocida Serotyping Systems". American Journal of Veterinary Research. 40 (9): 1332–1335. PMID 118694.
  • Brown, WB (1986). "Late Pine Siskins in Ben Hill County Georgia USA". Oriole. 51: 2–3.
  • Buttemer, WA; Astheimer, LB; Wingfield, JC (1991). "The Effect of Corticosterone on Standard Metabolic Rates of Small Passerine Birds". Journal of Comparative Physiology B. 161 (4): 427–432. doi:10.1007/bf00260804. PMID 1939747. S2CID 11440248.
  • Cook, AG (1984). "Birds of the Desert Region of Uintah County Utah USA". Great Basin Naturalist. 44 (4): 584–620.
  • Dawson, WR; Marsh, RL (1986). "Winter Fattening in the American Goldfinch Carduelis-Tristis and the Possible Role of Temperature in Its Regulation" (PDF). Physiological Zoology. 59 (3): 357–368. doi:10.1086/physzool.59.3.30156107. hdl:2047/d20000609. S2CID 53500320.
  • Dieni, JS; Anderson, SH (1999). "Effects of recent burning on breeding bird community structure in aspen forests". Journal of Field Ornithology. 70 (4): 491–503.
  • Elder, DH (2001). "Forest tent caterpillars and birds". Ontario Birds. 19 (2): 87–88.
  • Erickson, WR (2004). "Bird communities of the garry oak habitat in southwestern British Columbia". Canadian Field-Naturalist. 118 (3): 376–385. doi:10.22621/cfn.v118i3.4.
  • Farmer, KL; Hill, GE; Roberts, SR (2005). "Susceptibility of wild songbirds to the house finch strain of Mycoplasma gallisepticum". Journal of Wildlife Diseases. 41 (2): 317–325. doi:10.7589/0090-3558-41.2.317. PMID 16107666. S2CID 16021600.
  • Hahn TP, Pereyra ME & Sharbaugh SM. (2003). Effects of photoperiod on brain GnRH plasticity and peripheral reproductive physiology in three species of cardueline finches. Society for Neuroscience Abstract Viewer & Itinerary Planner. p. 611.
  • Hahn, TP; Pereyra, ME; Sharbaugh, SM; Bentley, GE (2004). "Physiological responses to photoperiod in three cardueline finch species". General and Comparative Endocrinology. 137 (1): 99–108. doi:10.1016/j.ygcen.2004.02.014. PMID 15094340.
  • Hahn, TP; Pereyra, ME; Sharbaugh, SM; Morton, ML (2002). "Reproductive responses to long and short days in three high latitude species of cardueline finches". Hormones and Behavior. 41: 4.
  • Hejl, SJ; Mack, DE; Young, JS; Bednarz, JC; Hutto, RL (2002). "Birds and changing landscape patterns in conifer forests of the north-central Rocky Mountains". Studies in Avian Biology. 25: 113–129.
  • Herbers, JR; Serrouya, R; Maxcy, KA (2004). "Effects of elevation and forest cover on winter birds in mature forest ecosystems of southern British Columbia". Canadian Journal of Zoology. 82 (11): 1720–1730. doi:10.1139/z04-151.
  • Hill, GE; McGraw, KI (2004). "Correlated changes in male plumage coloration and female mate choice in cardueline finches". Animal Behaviour. 67 (1): 27–35. doi:10.1016/j.anbehav.2003.02.002. S2CID 53195794.
  • Hobson, KA; Bayne, E (2000). "Breeding bird communities in boreal forest of western Canada: Consequences of "unmixing" the mixedwoods". Condor. 102 (4): 759–769. doi:10.1650/0010-5422(2000)102[0759:bbcibf]2.0.co;2.
  • Hobson, KA; Schieck, J (1999). "Changes in bird communities in boreal mixedwood forest: Harvest and wildfire effects over 30 years". Ecological Applications. 9 (3): 849–863. doi:10.1890/1051-0761(1999)009[0849:cibcib]2.0.co;2. S2CID 28285190.
  • Jennings, DT; Crawford, HS (1983). "Pine Siskin Preys on Egg Masses of the Spruce Budworm Choristoneura-Fumiferana Lepidoptera Tortricidae". Canadian Entomologist. 115 (4): 439–440. doi:10.4039/ent115439-4. S2CID 86399551.
  • Jim, S; Keith, AH (2000). "Bird communities associated with live residual tree patches within cut blocks and burned habitat in mixedwood boreal forests". Canadian Journal of Forest Research. 30 (8): 1281. doi:10.1139/x00-061.
  • Kaufman, K (1993). "Notes on goldfinch identification". American Birds. 47 (1): 159–162.
  • Keller, ME; Anderson, SH (1992). "Avian Use of Habitat Configurations Created by Forest Cutting in Southeastern Wyoming". Condor. 94 (1): 55–65. doi:10.2307/1368795. JSTOR 1368795.
  • Koenig, WD (2001). "Synchrony and periodicity of eruptions by boreal birds". Condor. 103 (4): 725–735. doi:10.1650/0010-5422(2001)103[0725:sapoeb]2.0.co;2.
  • Koenig, WD; Knops, JMH (2001). "Seed-crop size and eruptions of North American boreal seed-eating birds". Journal of Animal Ecology. 70 (4): 609–620. doi:10.1046/j.1365-2656.2001.00516.x.
  • Kubisz, MA (1989). "Burdock as a Hazard to Golden-Crowned Kinglets and Other Small Birds". Ontario Birds. 7 (3): 112–114.
  • Lagory, KE; Lagory, MK; Meyers, DM; Herman, SG (1984). "Niche Relationships in Wintering Mixed Species Flocks in Western Washington USA". Wilson Bulletin. 96 (1): 108–116.
  • Langelier, LA; Garton, EO (1986). "Management Guidelines for Increasing Populations of Birds That Feed on Western Spruce Budworm". U S Department of Agriculture Handbook. 653: 1–19.
  • Larson, DL; Bock, CE (1986). "Eruptions of Some North American Boreal Seed-Eating Birds 1901-1980". Ibis. 128 (1): 137–140. doi:10.1111/j.1474-919x.1986.tb02101.x.
  • Lawler, JJ; O'Connor, RJ; Hunsaker, CT; Jones, KB; Loveland, TR; White, D (2004). "The effects of habitat resolution on models of avian diversity and distributions: a comparison of two land-cover classifications". Landscape Ecology. 19 (5): 515–530. doi:10.1023/b:land.0000036151.28327.01. S2CID 7336560.
  • MacDougall-Shackleton, SA; Hahn, TP (1999). "Photorefractoriness and the evolution of reproductive flexibility in cardueline finches". American Zoologist. 39 (5): 2–143A. doi:10.1093/icb/39.5.2. JSTOR 3884325.
  • MacDougall-Shackleton, SA; Katti, M; Hahn, TP (2006). "Tests of absolute photorefractoriness in four species of cardueline finch that differ in reproductive schedule". Journal of Experimental Biology. 209 (19): 3786–3794. doi:10.1242/jeb.02447. PMID 16985195.
  • Manuwal, DA; Huff, MH (1987). "Spring and Winter Bird Populations in a Douglas-Fir Forest Sere". Journal of Wildlife Management. 51 (3): 586–595. doi:10.2307/3801273. JSTOR 3801273.
  • McLaren, IA; Morlan, J; Smith, PW; Gosselin, M; Bailey, SE (1989). "Eurasian Siskins in North America Distinguishing Females from Green-Morph Pine Siskins". American Birds. 43 (5): 1268–1274.
  • Medin, DE (1984). "Breeding Birds of an Ancient Bristlecone Pine Pinus-Longavo Stand in East Central Nevada USA". Great Basin Naturalist. 44 (2): 272–276.
  • Mills, A (1986). "Correlations among Winter Finch Numbers at Ottawa Canada 1958-1983". Ontario Birds. 4 (1): 30–32.
  • Moore, T (1990). "Pine siskins remain until June in Fulton County". Oriole. 55: 2–3.
  • Mundinger, PC (1979). "Call Learning in the Carduelinae Ethological and Systematic Considerations". Systematic Zoology. 28 (3): 270–283. doi:10.2307/2412582. JSTOR 2412582.
  • Nagle, L; Kreutzer, M; Vallet, E (2002). "Adult female canaries respond to male song by calling". Ethology. 108 (5): 463–472. doi:10.1046/j.1439-0310.2002.00790.x.
  • Oberle, MW; Haney, JC (1997). "Possible breeding range extensions of northern forest birds in northeast Georgia". Oriole. 62 (3–4): 35–44.
  • Pereyra, ME; MacDougall-Shackleton, SA; Sharbaugh, SM; Morton, ML; Katti, M; Hahn, TP (2001). "Relationships between photorefrac-toriness and reproductive flexibility in cardueline finches". American Zoologist. 41 (6): 1377–1655. doi:10.1668/0003-1569(2001)040[1377:aba]2.3.co;2.
  • Pereyra, ME; Sharbaugh, SM; Hahn, TP (2003). "Interspecific variation in photo-induced hypothalamic GnRH plasticity in cardueline finches". Integrative and Comparative Biology. 43 (6): 804–1094. JSTOR 3884728.
  • Pereyra, ME; Sharbaugh, SM; Hahn, TP (2005). "Interspecific variation in photo-induced GnRH plasticity among nomadic cardueline finches". Brain, Behavior and Evolution. 66 (1): 35–49. doi:10.1159/000085046. PMID 15821347. S2CID 11235699.
  • Popp, JW (1988). "Scanning Behavior of Finches in Mixed-Species Groups". Condor. 90 (2): 510–512. doi:10.2307/1368587. JSTOR 1368587.
  • Popp, JW (1989). "Use of Agonistic Displays by Purple Finches During Interspecific Encounters". Bird Behavior. 8 (1): 48–50. doi:10.3727/015613888791871304.
  • Prescott, DRC (1985). "Feeding at Night by Wintering Pine Siskins Carduelis-Pinus". Journal of Field Ornithology. 56: 4.
  • Rohweder, MR; McKetta, CW; Riggs, RA (2000). "Economic and biological compatibility of timber and wildlife production: an illustrative use of production possibilities frontier". Wildlife Society Bulletin. 28 (2): 435–447.
  • Roland, J; Hannon, SJ; Smith, MA (1986). "Foraging Pattern of Pine Siskins Carduelis-Pinus and Its Influence on Winter Moth Operophtera-Brumata Survival in an Apple Orchard". Oecologia. 69 (1): 47–52. Bibcode:1986Oecol..69...47R. doi:10.1007/bf00399036. PMID 28311683. S2CID 22860293.
  • Scott, VE; Crouch, GL (1987). "Response of Breeding Birds to Commercial Clearcutting of Aspen in Southwestern Colorado USA". U S Forest Service Research Note RM. 475: 1–5. doi:10.5962/bhl.title.99219. hdl:2027/umn.31951d02964979p.
  • Tallman, DA; Zusi, RL (1984). "A Hybrid Red Crossbill Pine Siskin Loxia-Curvirostra X Carduelis-Pinus and Speculations on the Evolution of Loxia". Auk. 101 (1): 155–158. doi:10.1093/auk/101.1.155.
  • Unitt, P; Rodriguez Estrella, R; Castellanos Vera, A (1992). "Ferruginous hawk and pine siskin in the Sierra De La Laguna, Baja California Sur: Subspecies of the pine siskin in Baja California". Western Birds. 23 (4): 171–172.
  • Wright, DH (1996). "Intermittent birding at Prince Albert, 1982-1985". Blue Jay. 54 (3): 3. doi:10.29173/bluejay5481.
  • Yunick, RP (1976). "Delayed Molt in the Pine Siskin". Bird-Banding. 47 (4): 306–309. doi:10.2307/4512265. JSTOR 4512265.
  • Zamora, J; Ernesto, L; Ruiz-del-Valle, V; Moscoso, J; Serrano-Vela, JI; Rivero-de-Aguilar, J; Arnaiz-Villena, A (2006). "Rhodopechys obsoleta (desert finch): a pale ancestor of greenfinches (Carduelis spp.) according to molecular phylogeny". Journal of Ornithology. 147 (3): 448–456. doi:10.1007/s10336-005-0036-2. S2CID 8771417.
  • Zinkl, JG; Henny, CJ; Lenhart, DJ; Roberts, RB (1980). "Inhibition of Brain Cholin Esterase Activity in Forest Birds and Squirrels Exposed to Aerially Applied Acephate". Bulletin of Environmental Contamination and Toxicology. 24 (5): 676–683. doi:10.1007/bf01608173. PMID 7459456. S2CID 5632354.

External links[]

Retrieved from ""