Positive polynomial

From Wikipedia, the free encyclopedia

In mathematics, a positive polynomial on a particular set is a polynomial whose values are positive on that set.

Let p be a polynomial in n variables with real coefficients and let S be a subset of the n-dimensional Euclidean spacen. We say that:

  • p is positive on S if p(x) > 0 for every x in S.
  • p is non-negative on S if p(x) ≥ 0 for every x in S.
  • p is zero on S if p(x) = 0 for every x in S.

For certain sets S, there exist algebraic descriptions of all polynomials that are positive, non-negative, or zero on S. Such a description is a positivstellensatz, nichtnegativstellensatz, or nullstellensatz. This article will focus on the former two descriptions. For the latter, see Hilbert's Nullstellensatz for the most known nullstellensatz.

Examples of positivstellensatz (and nichtnegativstellensatz)[]

  • Globally positive polynomials and sum of squares decomposition.
    • Every real polynomial in one variable and with even degree is non-negative on ℝ if and only if it is a sum of two squares of real polynomials in one variable.[1] This equivalence does not generalize for polynomial with more than one variable: for instance, the Motzkin polynomial X 4Y 2 + X 2Y 4 − 3X 2Y 2 + 1 is non-negative on ℝ2 but is not a sum of squares of elements from ℝ[XY].[2]
    • A real polynomial in n variables is non-negative on ℝn if and only if it is a sum of squares of real rational functions in n variables (see Hilbert's seventeenth problem and Artin's solution[3]).
    • Suppose that p ∈ ℝ[X1, ..., Xn] is homogeneous of even degree. If it is positive on ℝn \ {0}, then there exists an integer m such that (X12 + ... + Xn2)mp is a sum of squares of elements from ℝ[X1, ..., Xn].[4]
  • Polynomials positive on polytopes.
    • For polynomials of degree ≤ 1 we have the following variant of Farkas lemma: If f, g1, ..., gk have degree ≤ 1 and f(x) ≥ 0 for every x ∈ ℝn satisfying g1(x) ≥ 0, ..., gk(x) ≥ 0, then there exist non-negative real numbers c0, c1, ..., ck such that f = c0 + c1g1 + ... + ckgk.
    • Pólya's theorem:[5] If p ∈ ℝ[X1, ..., Xn] is homogeneous and p is positive on the set {x ∈ ℝn | x1 ≥ 0, ..., xn ≥ 0, x1 + ... + xn ≠ 0}, then there exists an integer m such that (x1 + ... + xn)m p has non-negative coefficients.
    • Handelman's theorem:[6] If K is a compact polytope in Euclidean d-space, defined by linear inequalities gi ≥ 0, and if f is a polynomial in d variables that is positive on K, then f can be expressed as a linear combination with non-negative coefficients of products of members of {gi}.
  • Polynomials positive on semialgebraic sets.

Generalizations of positivstellensatz[]

Positivstellensatz also exist for trigonometric polynomials, matrix polynomials, polynomials in free variables, various quantum polynomials, etc.[citation needed]

References[]

  • Bochnak, Jacek; Coste, Michel; Roy, Marie-Françoise. Real Algebraic Geometry. Translated from the 1987 French original. Revised by the authors. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36. Springer-Verlag, Berlin, 1998. x+430 pp. ISBN 3-540-64663-9.
  • Marshall, Murray. "Positive polynomials and sums of squares". Mathematical Surveys and Monographs, 146. American Mathematical Society, Providence, RI, 2008. xii+187 pp. ISBN 978-0-8218-4402-1, ISBN 0-8218-4402-4.

Notes[]

  1. ^ Benoist, Olivier (2017). "Writing Positive Polynomials as Sums of (Few) Squares". EMS Newsletter. 2017–9 (105): 8–13. doi:10.4171/NEWS/105/4. ISSN 1027-488X.
  2. ^ T. S. Motzkin, The arithmetic-geometric inequality. 1967 Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965) pp. 205–224.
  3. ^ E. Artin, Uber die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 85–99.
  4. ^ B. Reznick, Uniform denominators in Hilbert's seventeenth problem. Math. Z. 220 (1995), no. 1, 75–97.
  5. ^ G. Pólya, Über positive Darstellung von Polynomen Vierteljschr, Naturforsch. Ges. Zürich 73 (1928) 141–145, in: R. P. Boas (Ed.), Collected Papers Vol. 2, MIT Press, Cambridge, MA, 1974, pp. 309–313.
  6. ^ D. Handelman, Representing polynomials by positive linear functions on compact convex polyhedra. Pacific J. Math. 132 (1988), no. 1, 35–62.
  7. ^ K. Schmüdgen. "The K-moment problem for compact semi-algebraic sets". Math. Ann. 289 (1991), no. 2, 203–206.
  8. ^ T. Wörmann. "Strikt Positive Polynome in der Semialgebraischen Geometrie", Univ. Dortmund 1998.
  9. ^ M. Putinar, "Positive polynomials on compact semi-algebraic sets". Indiana Univ. Math. J. 42 (1993), no. 3, 969–984.
  10. ^ T. Jacobi, "A representation theorem for certain partially ordered commutative rings". Math. Z. 237 (2001), no. 2, 259–273.
  11. ^ Vasilescu, F.-H. "Spectral measures and moment problems". Spectral analysis and its applications, 173–215, Theta Ser. Adv. Math., 2, Theta, Bucharest, 2003. See Theorem 1.3.1.
  12. ^ C. Scheiderer, "Sums of squares of regular functions on real algebraic varieties". Trans. Amer. Math. Soc. 352 (2000), no. 3, 1039–1069.
  13. ^ C. Scheiderer, "Sums of squares on real algebraic curves". Math. Z. 245 (2003), no. 4, 725–760.
  14. ^ C. Scheiderer, "Sums of squares on real algebraic surfaces". Manuscripta Math. 119 (2006), no. 4, 395–410.

See also[]

Retrieved from ""