Principal subalgebra

From Wikipedia, the free encyclopedia

In mathematics, a principal subalgebra of a complex simple Lie algebra is a 3-dimensional simple subalgebra whose non-zero elements are regular.

A finite-dimensional complex simple Lie algebra has a unique conjugacy class of principal subalgebras, each of which is the span of an sl2-triple.

References[]

  • Bourbaki, Nicolas (2005) [1975], Lie groups and Lie algebras. Chapters 7--9, Elements of Mathematics (Berlin), Berlin, New York: Springer-Verlag, ISBN 978-3-540-43405-4, MR 2109105[dead link]


Retrieved from ""