q-Charlier polynomials
In mathematics, the q-Charlier polynomials[1] are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition[]
The polynomials are given in terms of the basic hypergeometric function by
Orthogonality[]
This section is empty. You can help by . (September 2011) |
Recurrence and difference relations[]
This section is empty. You can help by . (September 2011) |
Rodrigues formula[]
This section is empty. You can help by . (September 2011) |
Generating function[]
This section is empty. You can help by . (September 2011) |
Relation to other polynomials[]
This section is empty. You can help by . (June 2015) |
References[]
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), http://dlmf.nist.gov/18, in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
{{citation}}
:|contribution-url=
missing title (help) - Sadjang, Patrick Njionou. Moments of Classical Orthogonal Polynomials (Ph.D.). Universität Kassel. Retrieved February 21, 2021.
- ^ There are similar named polynomials named alternative q-Charlier polynomials which is another name for q-Bessel polynomials.
Categories:
- Orthogonal polynomials
- Q-analogs
- Special hypergeometric functions