Sakuma–Hattori equation

From Wikipedia, the free encyclopedia

The Sakuma–Hattori equation is a mathematical model for predicting the amount of thermal radiation, radiometric flux or radiometric power emitted from a perfect blackbody or received by a thermal radiation detector.

History[]

The Sakuma–Hattori equation was first proposed by Fumihiro Sakuma, Akira Ono and Susumu Hattori in 1982.[1] In 1996, a study investigated the usefulness of various forms of the Sakuma–Hattori equation. This study showed the Planckian form to provide the best fit for most applications.[2] This study was done for 10 different forms of the Sakuma–Hattori equation containing not more than three fitting variables. In 2008, BIPM CCT-WG5 recommended its use for radiation thermometry uncertainty budgets below 960 °C.[3]

General form[]

The Sakuma–Hattori equation gives the electromagnetic signal from thermal radiation based on an object's temperature. The signal can be electromagnetic flux or signal produced by a detector measuring this radiation. It has been suggested that below the silver point[A], a method using the Sakuma–Hattori equation be used.[1] In its general form it looks like[3]

where:

  • is the scalar coefficient
  • is the second radiation constant (0.014387752 m⋅K[4])
  • is the temperature-dependent effective wavelength in meters
  • is the absolute temperature in kelvins

Planckian form[]

Derivation[]

The Planckian form is realized by the following substitution:

Making this substitution renders the following the Sakuma–Hattori equation in the Planckian form.

Sakuma–Hattori equation (Planckian form)
Inverse equation [5]
First derivative [6]

Discussion[]

The Planckian form is recommended for use in calculating uncertainty budgets for [3] and infrared thermometry.[5] It is also recommended for use in calibration of radiation thermometers below the silver point.[3]

The Planckian form resembles Planck's law.

However the Sakuma–Hattori equation becomes very useful when considering low-temperature, wide-band radiation thermometry. To use Planck's law over a wide spectral band, an integral like the following would have to be considered:

This integral yields an incomplete polylogarithm function, which can make its use very cumbersome. The standard numerical treatment expands the incomplete integral in a geometric series of the exponential

after substituting , . Then
provides an approximation if the sum is truncated at some order.

The Sakuma–Hattori equation shown above was found to provide the best curve-fit for interpolation of scales for radiation thermometers among a number of alternatives investigated.[2]

The inverse Sakuma–Hattori function can be used without iterative calculation. This is an additional advantage over integration of Planck's law.

Other forms[]

The 1996 paper investigated 10 different forms. They are listed in the chart below in order of quality of curve-fit to actual radiometric data.[2]

Name Equation Bandwidth Planckian
Sakuma–Hattori Planck III narrow yes
Sakuma–Hattori Planck IV narrow yes
Sakuma–Hattori – Wien's II narrow no
Sakuma–Hattori Planck II broad and narrow yes
Sakuma–Hattori – Wien's I broad and narrow no
Sakuma–Hattori Planck I monochromatic yes
New narrow no
Wien's monochromatic no
Effective Wavelength – Wien's narrow no
Exponent broad no

See also[]

Notes[]

  • ^
    Silver point, the melting point of silver 962°C [(961.961 ± 0.017)°C[7]] used as a calibration point in some temperature scales.[8]

    It is used to calibrate IR thermometers because it is stable and easy to reproduce.

  • References[]

    1. ^ a b Sakuma, F.; Hattori, S. (1982). "Establishing a practical temperature standard by using a narrow-band radiation thermometer with a silicon detector". In Schooley, J. F. (ed.). Temperature: Its Measurement and Control in Science and Industry. Vol. vol. 5. New York: AIP. pp. 421–427. ISBN 0-88318-403-6. {{cite book}}: |volume= has extra text (help)
    2. ^ a b c Sakuma F, Kobayashi M., "Interpolation equations of scales of radiation thermometers", Proceedings of TEMPMEKO 1996, pp. 305–310 (1996).
    3. ^ a b c d Fischer, J.; et al. (2008). "Uncertainty budgets for calibration of radiation thermometers below the silver point" (PDF). CCT-WG5 on Radiation Thermometry, BIPM, Sèvres, France. 29 (3): 1066. Bibcode:2008IJT....29.1066S. doi:10.1007/s10765-008-0385-1. S2CID 122082731.
    4. ^ "2006 CODATA recommended values". National Institute of Standards and Technology (NIST). Dec 2003. Retrieved Apr 27, 2010.
    5. ^ a b MSL Technical Guide 22 – Calibration of Low Temperature Infrared Thermometers (pdf), Measurement Standards Laboratory of New Zealand (2008).
    6. ^ ASTM Standard E2758-10 – Standard Guide for Selection and Use of Wideband, Low Temperature Infrared Thermometers, ASTM International, West Conshohocken, PA, (2010).
    7. ^ J Tapping and V N Ojha (1989). "Measurement of the Silver Point with a Simple, High-Precision Pyrometer". Metrologia. 26 (2): 133–139. Bibcode:1989Metro..26..133T. doi:10.1088/0026-1394/26/2/008.
    8. ^ "Definition of Silver Point - 962°C, the melting point of silver". Retrieved 2010-07-26.
    Retrieved from ""