Siegel zero

From Wikipedia, the free encyclopedia

In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero (also known as exceptional zero[1]), named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeroes of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near (in a quantifiable sense) to s = 1.

Motivation and definition[]

The way in which Siegel zeros appear in the theory of Dirichlet L-functions is as potential exceptions to the classical zero-free regions, which can only occur when the L-function is associated to a real Dirichlet character.

Real primitive Dirichlet characters[]

For an integer q ≥ 1, a Dirichlet character modulo q is an arithmetic function satisfying the following properties:

  • (Completely multiplicative) for every m, n;
  • (Periodic) for every n;
  • (Support) if .

That is, χ is the lifting of a homomorphism .

The trivial character is the character modulo 1, and the principal character modulo q, denoted , is the lifting of the trivial homomorphism . A character is called imprimitive if there exists some integer with such that the induced homomorphism factors as

for some character ; otherwise, is called primitive. A character is real (or quadratic) if it equals its complex conjugate (defined as ), or equivalently if . The real primitive Dirichlet characters are in one-to-one correspondence with the Kronecker symbols for a fundamental discriminant (i.e., the discriminant of a quadratic number field).[2] One way to define is as the completely multiplicative arithmetic function determined by (for p prime):

It is thus common to write , which are real primitive characters modulo .

Classical zero-free regions[]

The Dirichlet L-function associated to a character is defined as the analytic continuation of the Dirichlet series defined for , where s is a complex variable. For non-principal, this continuation is entire; otherwise it has a simple pole of residue at s = 1 as its only singularity. For , Dirichlet L-functions can be expanded into an Euler product , from where it follows that has no zeros in this region. The prime number theorem for arithmetic progressions is equivalent (in a certain sense) to (). Moreover, via the functional equation, we can reflect these regions through to conclude that, with the exception of negative integers of same parity as χ,[3] all the other zeros of must lie inside . This region is called the critical strip, and zeros in this region are called non-trivial zeros.

The classical theorem on zero-free regions (Grönwall,[4] Landau,[5] Titchmarsh[6]) states that there exists a(n) (effectively computable) real number such that, writing for the complex variable, the function has no zeros in the region

if is non-real. If is real, then there is at most one zero in this region, which must necessarily be real and simple. This possible zero is the so-called Siegel zero.

The Generalized Riemann Hypothesis (GRH) claims that for every , all the non-trivial zeros of lie on the line .

Defining "Siegel zeros"[]

Unsolved problem in mathematics:

Is there for which for every fundamental discriminant D provided ?

The definition of Siegel zeros as presented ties it to the constant A in the zero-free region. This makes it often tricky to handle dealing with these objects, since in many situations the particular value of the constant A is of little concern.[1] Hence, it is usual to work with more definite statements, either asserting or denying, the existence of an infinite family of such zeros, such as in:

  • Conjecture ("no Siegel zeros"): If denotes the largest real zero of , then .

The possibility of existence or non-existence of Siegel zeros has a large impact in closely related subjects of number theory, with the "no Siegel zeros" conjecture serving as a weaker although powerful and sometimes fully sufficient substitute for GRH (see below for an example involving Siegel–Tatuzawa's Theorem and the idoneal number problem). An equivalent formulation of "no Siegel zeros" that does not reference zeros explicitly is the statement:

The equivalence can be deduced for example by using the zero-free regions and classical estimates for the number of non-trivial zeros of up to a certain height.[7]

Landau–Siegel estimates[]

The first breakthrough in dealing with these zeros came from Landau, who showed that there exists an effectively computable, absolute constant B > 0 such that, if and are real primitive characters to distinct moduli, and are real zeros of respectively, then

This is saying that, if Siegel zeros exist, then they cannot be too numerous. The way this is proved is via a 'twisting' argument, which lifts the problem to the Dedekind zeta function of the biquadratic field . This technique is still largely applied in modern works.

This 'repelling effect' (see Deuring–Heilbronn phenomenon), after more careful analysis, led Landau to his 1936 theorem,[8] which states that for every , there is such that, if is a real zero of , then . However, in the same year, in the same issue of the same journal, Siegel[9] directly improved this estimate to

Both Landau's and Siegel's proofs provide no explicit way to calculate , thus being instances of an ineffective result.

Siegel–Tatuzawa Theorem[]

In 1951, proved an 'almost' effective version of Siegel's theorem,[10] showing that for any fixed , if then

with the possible exception of at most one fundamental discriminant. Using the 'almost effectivity' of this result, P. J. Weinberger (1973)[11] showed that Euler's list of 65 idoneal numbers is complete except for at most one element.

Relation to quadratic fields[]

Siegel zeros are more than an artificial issue in the argument for deducing zero-free regions, and in fact enjoy deep connections to the arithmetic of quadratic fields. For instance, the identity can be interpreted as the analytic formulation of quadratic reciprocity (see Artin reciprocity law §Statement in terms of L-functions). The actual connection between the distribution of zeros near s = 1 and arithmetic comes more precisely from Dirichlet's class number formula:

where:

  • is the ideal class number of ;
  • is the number of roots of unity in (D < 0);
  • is the fundamental unit of (D > 0).

This way, estimates for the largest real zero of can be translated into estimates for (via, for example, the fact that for ),[12] which in turn become estimates for . Classical works in the subject treat these three quantities essentially interchangeably, although the case D > 0 brings additional complications related to the fundamental unit.

Siegel zeros as 'quadratic phenomena'[]

There is a sense in which the difficulty associated to the phenomenon of Siegel zeros in general is entirely restricted to quadratic extensions. It is a consequence of the Kronecker–Weber theorem, for example, that the Dedekind zeta function of an abelian number field can be written as a product of Dirichlet L-functions.[13] Thus, if has a Siegel zero, there must be some subfield with such that has a Siegel zero.

While for the non-abelian case can only be factored into more complicated Artin L-functions, the same is true:

  • Theorem (Stark, 1974).[14] Let be a number field of degree n > 1. There is a constant ( if is normal, otherwise) such that, if there is a real in the range
with , then there is a quadratic subfield such that . Here, is the field discriminant of the extension .

"No Siegel zeros" for D < 0[]

When dealing with quadratic fields, the case tends to be elusive due to the behaviour of the fundamental unit. Thus, it is common to treat the cases and separately. Much more is known for the negative discriminant case:

Lower bounds for h(D)[]

In 1918, Hecke showed that "no Siegel zeros" for implies that [5] (see Class number problem for comparison). This can be extended to an equivalence, as it is a consequence of Theorem 3 in GranvilleStark (2000):[15]

where the summation runs over the reduced binary quadratic forms of discriminant . Using this, Granville and Stark showed that a certain uniform formulation of the abc conjecture for number fields implies "no Siegel zeros" for negative discriminants.

In 1976, D. Goldfeld[16] proved the following unconditional, effective lower bound for :

Complex multiplication[]

Another equivalence for "no Siegel zeros" for can be given in terms of upper bounds for heights of singular moduli:

where:

  • is the absolute logarithmic naïve height for number fields;
  • is the j-invariant function;
  • .

The number generates the Hilbert class field of , which is its maximal unramified abelian extension.[17] This equivalence is a direct consequence of the results in Granville–Stark (2000),[15] and can be seen in C. Táfula (2019).[18]

A precise relation between heights and values of L-functions was obtained by P. Colmez (1993,[19] 1998[20]), who showed that, for an elliptic curve with complex multiplication by , we have

where denotes the Faltings height.[21] Via the relatively elementary relations [22] and ,[23] Colmez' theorem also provides a proof for the equivalence above.

Consequences of Siegel zeros existing[]

Although the Generalized Riemann Hypothesis is expected to be true, while the "no Siegel zeros" conjecture remains open it is interesting to study what are the consequences of such severe counterexamples to the hypothesis. Another reason to study this possibility is that the proof of certain unconditional theorems require the division into two cases: first a proof assuming no Siegel zeros exist, then another assuming Siegel zeros do exist. The most famous example of a theorem of this type is Linnik's theorem on the smallest prime in an arithmetic progression.

The following are some examples of facts that follow from the existence of Siegel zeros.

Infinitude of twin primes[]

One of the most striking results in this direction is Heath-Brown's 1983 result[24] which, following Tao,[25] can be stated as follows:

  • Theorem (Heath-Brown, 1983). At least one the following is true: (1) There are no Siegel zeros. (2) There are infinitely many twin primes.

Parity problem[]

The parity problem in sieve theory roughly refers to the fact that sieving arguments are, generally speaking, unable to tell if an integer has an even or odd number of prime divisors. This leads to many upper bounds in sieve estimates, such as the one from the [26] being off by a factor of 2 from the expected value. In 2020, Granville[27] showed that under the assumption of the existence of Siegel zeros, the general upper bounds for the problem of sieving intervals are optimal, meaning that the extra factor of 2 coming from the parity phenomenon would thus not be an artificial limitation of the method.

See also[]

References[]

  1. ^ Jump up to: a b See Iwaniec (2006).
  2. ^ See Satz 4, §5 of Zagier (1981).
  3. ^ χ (mod q) is even if χ(-1) = 1, and odd if χ(-1) = -1.
  4. ^ Grönwall, T. H. (1913). "Sur les séries de Dirichlet correspondant à des charactères complexes". Rendiconti di Palermo (in French). 35: 145–159.
  5. ^ Jump up to: a b Landau, E. (1918). "Über die Klassenzahl imaginär-quadratischer Zahlkörper". Göttinger Nachrichten (in German): 285–295.
  6. ^ Titchmarsh, E. C. (1930). "A divisor problem". Rendiconti di Palermo. 54: 414–429.
  7. ^ See Chapter 16 of Davenport (1980).
  8. ^ Landau, E. (1936). "Bemerkungen zum Heilbronnschen Satz". Acta Arithmetica (in German): 1–18.
  9. ^ Siegel, C. L. (1935). "Über die Klassenzahl quadratischer Zahlkörper" [On the class numbers of quadratic fields]. Acta Arithmetica (in German). 1 (1): 83–86. doi:10.4064/aa-1-1-83-86.
  10. ^ Tatuzawa, T. (1951). "On a theorem of Siegel". Japanese Journal of Mathematics. 21: 163–178.
  11. ^ Weinberger, P. J. (1973). "Exponents of the class group of complex quadratic fields". Acta Arithmetica. 22: 117–124.
  12. ^ See (11) in Chapter 14 of Davenport (1980).
  13. ^ Theorem 10.5.25 in Cohen, H. (2007). Number Theory: Volume II: Analytic and Modern Tools. Graduate Texts in Mathematics, Number Theory. New York: Springer-Verlag. ISBN 978-0-387-49893-5..
  14. ^ Lemma 8 in Stark, H. M. (1974-06-01). "Some effective cases of the Brauer-Siegel Theorem". Inventiones mathematicae. 23 (2): 135–152. doi:10.1007/BF01405166. ISSN 1432-1297.
  15. ^ Jump up to: a b Granville, A.; Stark, H.M. (2000-03-01). "ABC implies no "Siegel zeros" for L-functions of characters with negative discriminant". Inventiones mathematicae. 139 (3): 509–523. doi:10.1007/s002229900036. ISSN 1432-1297.
  16. ^ Goldfeld, Dorian M. (1976). "The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer". Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (in French). 3 (4): 623–663.
  17. ^ Theorem II.4.1 in Silverman, Joseph H. (1994), Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, New York: Springer-Verlag, ISBN 978-0-387-94325-1.
  18. ^ Táfula, C. (2019). "On Landau-Siegel zeros and heights of singular moduli". arXiv:1911.07215 [math.NT].
  19. ^ Colmez, Pierre (1993). "Periodes des Varietes Abeliennes a Multiplication Complexe". Annals of Mathematics. 138 (3): 625–683. doi:10.2307/2946559. ISSN 0003-486X.
  20. ^ Colmez, Pierre (1998-05-01). "Sur la hauteur de Faltings des variétés abéliennes à multiplication complexe". Compositio Mathematica. 111 (3): 359–369. doi:10.1023/A:1000390105495. ISSN 1570-5846.
  21. ^ See the diagram in subsection 0.6 of Colmez (1993). There is small typo in the upper right corner of this diagram, that should instead read "".
  22. ^ Proposition 2.1, Chapter X of Cornell, G.; Silverman, J. H., eds. (1986). Arithmetic Geometry. New York: Springer-Verlag. ISBN 978-0-387-96311-2.
  23. ^ Consequence of the functional equation, where γ = 0.57721... is the Euler–Mascheroni constant.
  24. ^ Heath-Brown, D. R. (1983-09-01). "Prime Twins and Siegel Zeros". Proceedings of the London Mathematical Society. s3-47 (2): 193–224. doi:10.1112/plms/s3-47.2.193. ISSN 0024-6115.
  25. ^ "Heath-Brown's theorem on prime twins and Siegel zeroes". What's new. 2015-08-27. Retrieved 2021-03-13.
  26. ^ See Chapter 9 of Nathanson, Melvyn B. (1996). Additive Number Theory The Classical Bases. Graduate Texts in Mathematics. New York: Springer-Verlag. ISBN 978-0-387-94656-6.
  27. ^ Granville, A. (2020). "Sieving intervals and Siegel zeros". arXiv:2010.01211 [math.NT].
Retrieved from ""